6 resultados para quantum corrections to solitons
Resumo:
168 p.
Resumo:
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.
Resumo:
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.
Resumo:
[ES]En la actualidad el proceso de mecanizado mediante electroerosión por hilo (WEDM) posee varias problemáticas a la hora de la ejecución de los cortes para producir diferentes formas, ya sean esquinas, radios de redondeo o de acuerdo y por último la realización de círculos. Es por ello por lo que se elabora el presente trabajo cuya finalidad es llegar a caracterizar los errores cometidos en el corte de desbaste de probetas con trayectorias circulares y tecnología estándar. De esta manera se podrá cuantificar las desviaciones que se producen en las piezas en función del espesor y de sus radios. Toda la información obtenida en el trabajo permitirá una futura actuación en diversos parámetros máquina, elaborando nuevas tecnologías o bien poder mitigarlos realizando correcciones geométricas, ajustando sus tolerancias.
Resumo:
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Resumo:
19 p.