4 resultados para probability distribution
Resumo:
[ES] Los modelos implícitos constituyen uno de los enfoques de valoración de opciones alternativos al modelo de Black-Scholes que ha conocido un mayor desarrollo en los últimos años. Dentro de este planteamiento existen diferentes alternativas: los árboles implícitos, los modelos con función de volatilidad determinista y los modelos con función de volatilidad implícita. Todos ellos se construyen a partir de una estimación de la distribución de probabilidades riesgo-neutral del precio futuro del activo subyacente, congruente con los precios de mercado de las opciones negociadas. En consecuencia, los modelos implícitos proporcionan buenos resultados en la valoración de opciones dentro de la muestra. Sin embargo, su comportamiento como instrumento de predicción para opciones fuera de muestra no resulta satisfactorio. En este artículo se analiza la medida en la que este enfoque contribuye a la mejora de la valoración de opciones, tanto desde un punto de vista teórico como práctico.
Resumo:
[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.
Resumo:
Spanish Relativity Meeting (ERE 2014) Valencia, SPAIN, SEP 01-05, 2014
Resumo:
Recently, probability models on rankings have been proposed in the field of estimation of distribution algorithms in order to solve permutation-based combinatorial optimisation problems. Particularly, distance-based ranking models, such as Mallows and Generalized Mallows under the Kendall’s-t distance, have demonstrated their validity when solving this type of problems. Nevertheless, there are still many trends that deserve further study. In this paper, we extend the use of distance-based ranking models in the framework of EDAs by introducing new distance metrics such as Cayley and Ulam. In order to analyse the performance of the Mallows and Generalized Mallows EDAs under the Kendall, Cayley and Ulam distances, we run them on a benchmark of 120 instances from four well known permutation problems. The conducted experiments showed that there is not just one metric that performs the best in all the problems. However, the statistical test pointed out that Mallows-Ulam EDA is the most stable algorithm among the studied proposals.