2 resultados para pollen concentration in the air


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air-sea interaction patterns and timescales for the period 2009-2010. The analysis was conducted using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind-current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind-current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Non-alcoholic fatty liver disease (NAFLD) is caused by abnormal accumulation of lipids within liver cells. Its prevalence is increasing in developed countries in association with obesity, and it represents a risk factor for non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Since NAFLD is usually asymptomatic at diagnosis, new non-invasive approaches are needed to determine the hepatic lipid content in terms of diagnosis, treatment and control of disease progression. Here, we investigated the potential of magnetic resonance imaging (MRI) to quantitate and monitor the hepatic triglyceride concentration in humans. Methods: A prospective study of diagnostic accuracy was conducted among 129 consecutive adult patients (97 obesity and 32 non-obese) to compare multi-echo MRI fat fraction, grade of steatosis estimated by histopathology, and biochemical measurement of hepatic triglyceride concentration (that is, Folch value). Results: MRI fat fraction positively correlates with the grade of steatosis estimated on a 0 to 3 scale by histopathology. However, this correlation value was stronger when MRI fat fraction was linked to the Folch value, resulting in a novel equation to predict the hepatic triglyceride concentration (mg of triglycerides/g of liver tissue = 5.082 + (432.104 * multi-echo MRI fat fraction)). Validation of this formula in 31 additional patients (24 obese and 7 controls) resulted in robust correlation between the measured and estimated Folch values. Multivariate analysis showed that none of the variables investigated improves the Folch prediction capacity of the equation. Obese patients show increased steatosis compared to controls using MRI fat fraction and Folch value. Bariatric surgery improved MRI fat fraction values and the Folch value estimated in obese patients one year after surgery. Conclusions: Multi-echo MRI is an accurate approach to determine the hepatic lipid concentration by using our novel equation, representing an economic non-invasive method to diagnose and monitor steatosis in humans.