5 resultados para non-trivial data structures
Resumo:
150 p.
Resumo:
311 p. : il.
Resumo:
There is an increasing number of Ambient Intelligence (AmI) systems that are time-sensitive and resource-aware. From healthcare to building and even home/office automation, it is now common to find systems combining interactive and sensing multimedia traffic with relatively simple sensors and actuators (door locks, presence detectors, RFIDs, HVAC, information panels, etc.). Many of these are today known as Cyber-Physical Systems (CPS). Quite frequently, these systems must be capable of (1) prioritizing different traffic flows (process data, alarms, non-critical data, etc.), (2) synchronizing actions in several distributed devices and, to certain degree, (3) easing resource management (e.g., detecting faulty nodes, managing battery levels, handling overloads, etc.). This work presents FTT-MA, a high-level middleware architecture aimed at easing the design, deployment and operation of such AmI systems. FTT-MA ensures that both functional and non-functional aspects of the applications are met even during reconfiguration stages. The paper also proposes a methodology, together with a design tool, to create this kind of systems. Finally, a sample case study is presented that illustrates the use of the middleware and the methodology proposed in the paper.
Resumo:
[EN]This work analyzes the problem of community structure in real-world networks based on the synchronization of nonidentical coupled chaotic Rössler oscillators each one characterized by a defined natural frequency, and coupled according to a predefined network topology. The interaction scheme contemplates an uniformly increasing coupling force to simulate a society in which the association between the agents grows in time. To enhance the stability of the correlated states that could emerge from the synchronization process, we propose a parameterless mechanism that adapts the characteristic frequencies of coupled oscillators according to a dynamic connectivity matrix deduced from correlated data. We show that the characteristic frequency vector that results from the adaptation mechanism reveals the underlying community structure present in the network.
Resumo:
Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification