2 resultados para multi-field electrodes
Resumo:
Functional Electrical Stimulation (FES) is a technique that consists on applying electrical current pulses to artificially activate motor nerve fibers and produce muscle contractions to achieve functional movements. The main applications of FES are within the rehabilitation field, in which this technique is used to aid recovery or to restore lost motor functions. People that benefit of FES are usually patients with neurological disorders which result in motor dysfunctions; most common patients include stroke and spinal cord injury (SCI). Neuroprosthesis are devices that have their basis in FES technique, and their aim is to bridge interrupted or damaged neural paths between the brain and upper or lower limbs. One of the aims of neuroprosthesis is to artificially generate muscle contractions that produce functional movements, and therefore, assist impaired people by making them able to perform activities of daily living (ADL). FES applies current pulses and stimulates nerve fibers by means of electrodes, which can be either implanted or surface electrodes. Both of them have advantages and disadvantages. Implanted electrodes need open surgery to place them next to the nerve root, so these electrodes carry many disadvantages that are produced by the use of invasive techniques. In return, as the electrodes are attached to the nerve, they make it easier to achieve selective functional movements. On the contrary, surface electrodes are not invasive and are easily attached or detached on the skin. Main disadvantages of surface electrodes are the difficulty of selectively stimulating nerve fibers and uncomfortable feeling perceived by users due to sensory nerves located in the skin. Electrical stimulation surface electrode technology has improved significantly through the years and recently, multi-field electrodes have been suggested. This multi-field or matrix electrode approach brings many advantages to FES; among them it is the possibility of easily applying different stimulation methods and techniques. The main goal of this thesis is therefore, to test two stimulation methods, which are asynchronous and synchronous stimulation, in the upper limb with multi-field electrodes. To this end, a purpose-built wrist torque measuring system and a graphic user interface were developed to measure wrist torque produced with each of the methods and to efficiently carry out the experiments. Then, both methods were tested on 15 healthy subjects and sensitivity results were analyzed for different cases. Results show that there are significant differences between methods regarding sensation in some cases, which can affect effectiveness or success of FES.
Resumo:
Quantum Computing is a relatively modern field which simulates quantum computation conditions. Moreover, it can be used to estimate which quasiparticles would endure better in a quantum environment. Topological Quantum Computing (TQC) is an approximation for reducing the quantum decoherence problem1, which is responsible for error appearance in the representation of information. This project tackles specific instances of TQC problems using MOEAs (Multi-objective Optimization Evolutionary Algorithms). A MOEA is a type of algorithm which will optimize two or more objectives of a problem simultaneously, using a population based approach. We have implemented MOEAs that use probabilistic procedures found in EDAs (Estimation of Distribution Algorithms), since in general, EDAs have found better solutions than ordinary EAs (Evolutionary Algorithms), even though they are more costly. Both, EDAs and MOEAs are population-based algorithms. The objective of this project was to use a multi-objective approach in order to find good solutions for several instances of a TQC problem. In particular, the objectives considered in the project were the error approximation and the length of a solution. The tool we used to solve the instances of the problem was the multi-objective framework PISA. Because PISA has not too much documentation available, we had to go through a process of reverse-engineering of the framework to understand its modules and the way they communicate with each other. Once its functioning was understood, we began working on a module dedicated to the braid problem. Finally, we submitted this module to an exhaustive experimentation phase and collected results.