4 resultados para motion-based driving simulator
Resumo:
[EN] In today s economy, innovation is considered to be one of the main driving forces behind business competitiveness, if not the most relevant one. Traditionally, the study of innovation has been addressed from different perspectives. Recently, literature on knowledge management and intellectual capital has provided new insights. Considering this, the aim of this paper is to analyze the impact of different organizational conditions i.e. structural capital on innovation capability and innovation performance, from an intellectual capital (IC) perspective. As regards innovation capability, two dimensions are considered: new idea generation and innovation project management. The population subject to study is made up of technology-based Colombian firms. In order to gather information about the relevant variables involved in the research, a questionnaire was designed and addressed to the CEOs of the companies making up the target population. The sample analyzed is made up of 69 companies and is large enough to carry out a statistical study based on structural equation modelling (partial least squares approach) using PLS-Graph software (Chin and Frye, 2003). The results obtained show that structural capital explains to a great extent both the effectiveness of the new idea generation process and of innovation project management. However, the influence of each specific organizational component making up structural capital (organizational design, organizational culture, hiring and professional development policies, innovation strategy, technological capital, and external structure) varies. Moreover, successful innovation project management is the only innovation capability dimension that exerts a significant impact on company performance.
Resumo:
Background: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.
Resumo:
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.
Resumo:
Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.