3 resultados para modeling of arrival processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article investigates the convergence properties of iterative processes involving sequences of self-mappings of metric or Banach spaces. Such sequences are built from a set of primary self-mappings which are either expansive or non-expansive self-mappings and some of the non-expansive ones can be contractive including the case of strict contractions. The sequences are built subject to switching laws which select each active self-mapping on a certain activation interval in such a way that essential properties of boundedness and convergence of distances and iterated sequences are guaranteed. Applications to the important problem of stability of dynamic switched systems are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.