7 resultados para model reference adaptive control systems
Resumo:
This paper investigates the presence of limit oscillations in an adaptive sampling system. The basic sampling criterion operates in the sense that each next sampling occurs when the absolute difference of the signal amplitude with respect to its currently sampled signal equalizes a prescribed threshold amplitude. The sampling criterion is extended involving a prescribed set of amplitudes. The limit oscillations might be interpreted through the equivalence of the adaptive sampling and hold device with a nonlinear one consisting of a relay with multiple hysteresis whose parameterization is, in general, dependent on the initial conditions of the dynamic system. The performed study is performed on the time domain.
Resumo:
Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.
Resumo:
This article investigates the convergence properties of iterative processes involving sequences of self-mappings of metric or Banach spaces. Such sequences are built from a set of primary self-mappings which are either expansive or non-expansive self-mappings and some of the non-expansive ones can be contractive including the case of strict contractions. The sequences are built subject to switching laws which select each active self-mapping on a certain activation interval in such a way that essential properties of boundedness and convergence of distances and iterated sequences are guaranteed. Applications to the important problem of stability of dynamic switched systems are also given.
Resumo:
Recent works in the area of adaptive education systems point out the importance of aumenting the student model to improve the personalization and adaptation to the learner by means of several aspects such as emotions, user locations or interactions. Until now the study of interactions has been mainly focused on the student-learning system flow, despite the fact that the most successful and used way of teaching are the traditional face-to-face interactions. In this project, we explore the use of interactions among teachers and students, as they occur in traditional education, to enrich the current student models, with the aim of providing them with useful information about new characteristics for improving the learning process. At a first step, in this paper we present the formal process carried out to obtain information about teachers’ expertise and necessities regarding the direct interactions with students.
Resumo:
This paper investigates the local asymptotic stabilization of a very general class of instable autonomous nonlinear difference equations which are subject to perturbed dynamics which can have a different order than that of the nominal difference equation. In the general case, the controller consists of two combined parts, namely, the feedback nominal controller which stabilizes the nominal (i.e., perturbation-free) difference equation plus an incremental controller which completes the stabilization in the presence of perturbed or unmodeled dynamics in the uncontrolled difference equation. A stabilization variant consists of using a single controller to stabilize both the nominal difference equation and also the perturbed one under a small-type characterization of the perturbed dynamics. The study is based on Banach fixed point principle, and it is also valid with slight modification for the stabilization of unstable oscillatory solutions.
Resumo:
The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L, C) on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.
Resumo:
This paper presents some further results on proximal and asymptotic proximal contractions and on a class of generalized weak proximal contractions in metric spaces. The generalizations are stated for non-self-mappings of the forms for and , or , subject to and , such that converges uniformly to T, and the distances are iteration-dependent, where , , and are non-empty subsets of X, for , where is a metric space, provided that the set-theoretic limit of the sequences of closed sets and exist as and that the countable infinite unions of the closed sets are closed. The convergence of the sequences in the domain and the image sets of the non-self-mapping, as well as the existence and uniqueness of the best proximity points, are also investigated if the metric space is complete. Two application examples are also given, being concerned, respectively, with the solutions through pseudo-inverses of both compatible and incompatible linear algebraic systems and with the parametrical