3 resultados para minimal ontological overlap


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we introduce a new cost sharing rule-the minimal overlap cost sharing rule-which is associated with the minimal overlap rule for claims problems defined by O'Neill (1982). An axiomatic characterization is given by employing a unique axiom: demand separability. Variations of this axiom enable the serial cost sharing rule (Moulin and Shenker, 1992) and the rules of a family (Albizuri, 2010) that generalize the serial cost sharing rule to be characterized. Finally, a family that includes the minimal overlap cost sharing rule is defined and obtained by means of an axiomatic characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce a new axiom, denoted claims separability, that is satisfied by several classical division rules defined for claims problems. We characterize axiomatically the entire family of division rules that satisfy this new axiom. In addition, employing claims separability, we characterize the minimal overlap rule, given by O'Neill (1982), Piniles rule and the rules in the TAL-family, introduced by Moreno-Ternero and Villar (2006), which includes the uniform gains rule, the uniform losses rule and the Talmud rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hart and Mas Colell (1989) introduce the potential function for cooperative TU games. In this paper, we extend this approach to claims problems, also known as bankruptcy or rationing problems. We show that for appropriate subproblems, the random arrival rule, the rules in the TAL-family (which include the uniform gains rule, the uniform losses rule and the Talmud rule), the minimal overlap rule, and the proportional rule admit a potential. We also study the balanced contributions property for these rules. By means of a potential, we introduce a generalization of the random arrival rule and mixtures of the minimal overlap rule and the uniform losses rule.