5 resultados para medical image segmentation
Resumo:
373 p. : il., gráf., fot., tablas
Resumo:
311 p. : il.
Resumo:
142 p.
Resumo:
[EN] The concept of image in its different aspects is very important in today s society as well as in the business management field. Some authors reports that most of the studies that measure image do not take into account neither previous theoretical and conceptual models nor other possible empirical evidence alternatives. Given this need, a research regarding the concept of brand image applied to shopping malls was conducted based on the conceptual model of the consumer cognitive response in order to empirically explore and contrast it. For this reason, a survey was applied to 420 consumers in five shopping malls in Bogotá, achieving a database of 3.749 cases. The results show attribute-shopping mall associations expressed in unique, differentiated, and notorious vocabulary obtained applying lexicometric and multivariate analysis techniques. Attribute-shopping mall associations such as spacious , good location , good variety of stores , and the existence of movie theaters . Finally, this research aims to potentially improve the management of shopping malls and increase their attractiveness and customer loyalty by applying the development of service quality systems, integral communication, segmentation, and positioning.
Resumo:
In the problem of one-class classification (OCC) one of the classes, the target class, has to be distinguished from all other possible objects, considered as nontargets. In many biomedical problems this situation arises, for example, in diagnosis, image based tumor recognition or analysis of electrocardiogram data. In this paper an approach to OCC based on a typicality test is experimentally compared with reference state-of-the-art OCC techniques-Gaussian, mixture of Gaussians, naive Parzen, Parzen, and support vector data description-using biomedical data sets. We evaluate the ability of the procedures using twelve experimental data sets with not necessarily continuous data. As there are few benchmark data sets for one-class classification, all data sets considered in the evaluation have multiple classes. Each class in turn is considered as the target class and the units in the other classes are considered as new units to be classified. The results of the comparison show the good performance of the typicality approach, which is available for high dimensional data; it is worth mentioning that it can be used for any kind of data (continuous, discrete, or nominal), whereas state-of-the-art approaches application is not straightforward when nominal variables are present.