3 resultados para liquids
Resumo:
Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.
Resumo:
[EN]The present doctoral thesis centers on studying pyrolysis as a chemical recycling technique for rejected packaging waste fractions coming from separation and sorting plants. The pyrolysis experiments have been carried out in a lab-scale installation equipped with a 3.5 L semi-batch reactor and a condensation and collection system for the liquids and gases generated. In the present thesis, an experimental study on the conventional pyrolysis process applied to the aforementioned waste fractions has been conducted, as well as the study of non-conventional or advanced pyrolysis processes such as catalytic and stepwise pyrolysis. The study of the operating parameters has been carried out using a mixed plastics simulated sample, the composition of which is similar to that found in real fractions, and subsequently the optimized process has been applied to real packaging waste. An exhaustive characterization of the solids, liquids and gases obtained in the process has been made after each experiment and their potential uses have been established. Finally, an empirical model that will predict the pyrolysis yields (% organic liquid, % aqueous liquid, % gases, % char, % inorganic solid) as a function of the composition of the initial sample has been developed. As a result of the experimental work done, the requirements have been established for an industrial packaging waste pyrolysis plant that aims to be sufficiently versatile as to generate useful products regardless of the nature of the raw material.
Resumo:
A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 degrees C (environmental condition) to 50 degrees C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology.