3 resultados para ligninolytic fungi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laccases (benzenediol : oxygen oxi doreductases; EC 1.10.3.2) are wide spread i n nature. They are usually found in higher plants and fungi (Thurston 19 94; Mayer and Staples 2002), but recently some bacterial laccases have also been found . The first laccase studied was from Rhus vernicifera in 1883, a Japanese lacquer tree, fr om which the name laccase was derived (Yoshida , 1883). These enzymes belong to the group of bl ue multi - copper oxidases (MCOs) . They usually contain four copper atoms located in three distinct sites. Each site reacts differently to light. The Type 1 (T1) site copper atom absorbs intensely at 600 nm and emits the blue light , the Type 2 (T2) site copper atom is not visible in the absorption spectr um and last, the Type 3 (T3) site has two c opper atoms and absorbs at 330 nm ( Santhanam et al . , 2011; Quintanar et al . , 2007 ) . The protei n structure acts as a complex ligand for the catalytic coppers, providing them the right structure where changes between the reduction states are thermodynamically possible (Dub é , 2008 ) . These enzymes oxidize a surprisingly wide variety of organic and inorganic compounds like, diphenols, polyphenols, substituted phenols, diamines and a romatic amines, with concomitant reduction of molecular oxygen to water (Thurston , 1