2 resultados para interleukin 1 gene
Resumo:
Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing
Resumo:
[en]Human papillomavirus (HPV) belongs to the Papillomaviridae virus family and it is one of the most common sexual transmission infections. HPV genome is composed of eight genes, including two early genes and six late genes. Among these late genes, E6 and E7 code for proteins that trigger cell-cycle re-entry in infected cells, which can lead to cervical cancer development. The IARC (International Agency for Research Cancer) proposed a guideline based on Hill’s criteria to determine whether the relation between HPV infection and cervical cancer is causal or not. Epidemiological studies have demonstrated that HPV infection is a necessary but non-sufficient cause for cervical cancer. Furthermore, HPV infection is considered the first necessary cause described of a human cancer, being HPV16 and 18 carcinogenic to humans and the most studied types. Cervical cancer is the second leading cause of cancer death among women worldwide. Different screening programs are carried out with the aim of preventing cervical cancer; such as cytologies and HPV tests. There are two main methods which are equally usable to detect HPV: the real-time PCR assays and the array assays. Regarding the molecular mechanisms of HPV mediated malignancies, E2, E6 and E7 proteins of HPV16 lead to immune response evasion, inducing IL-10 and TGF-β1 gene expression. Besides, E6 and E7 proteins allow cell-cycle reentry, phosphorylating RB and ubiquitinating p53 respectively. HPV genome integration in host genome leads to the alteration of host and viral genes expression, including oncogenes and tumor suppressor genes. However, the differences of E6 and E7 oncoproteins in different HPV types is poorly known due to the fact that almost the most studied HPV type has been HPV16.