4 resultados para fine tracking
Resumo:
Tracking the evolution of research in waste recycling science (WRS) can be valuable for environmental agencies, as well as for recycling businesses. Maps of science are visual, easily readable representations of the cognitive structure of a branch of science, a particular area of research or the global spectrum of scientific production. They are generally built upon evidence collected from reliable sources of information, such as patent and scientific publication databases. This study uses the methodology developed by Rafols et al. (2010) to make a “double overlay map” of WRS upon a basemap reflecting the cognitive structure of all journal-published science, for the years 2005 and 2010. The analysis has taken into account the cognitive areas where WRS articles are published and the areas from where it takes its intellectual nourishing, paying special attention to the growing trends of the key areas. Interpretation of results lead to the conclusion that extraction of energy from waste will probably be an important research topic in the future, along with developments in general chemistry and chemical engineering oriented to the recovery of valuable materials from waste. Agricultural and material sciences, together with the combined economics, politics and geography field, are areas with which WRS shows a relevant and ever increasing cognitive relationship.
Resumo:
10 p.
Resumo:
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (Pmax(T) permutation=161024). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naı¨ve cells, P = 0.0001; CD8+ naı¨ve cells, P,0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells.
Resumo:
Recent player tracking technology provides new information about basketball game performance. The aim of this study was to (i) compare the game performances of all-star and non all-star basketball players from the National Basketball Association (NBA), and (ii) describe the different basketball game performance profiles based on the different game roles. Archival data were obtained from all 2013-2014 regular season games (n = 1230). The variables analyzed included the points per game, minutes played and the game actions recorded by the player tracking system. To accomplish the first aim, the performance per minute of play was analyzed using a descriptive discriminant analysis to identify which variables best predict the all-star and non all-star playing categories. The all-star players showed slower velocities in defense and performed better in elbow touches, defensive rebounds, close touches, close points and pull-up points, possibly due to optimized attention processes that are key for perceiving the required appropriate environmental information. The second aim was addressed using a k-means cluster analysis, with the aim of creating maximal different performance profile groupings. Afterwards, a descriptive discriminant analysis identified which variables best predict the different playing clusters. The results identified different playing profile of performers, particularly related to the game roles of scoring, passing, defensive and all-round game behavior. Coaching staffs may apply this information to different players, while accounting for individual differences and functional variability, to optimize practice planning and, consequently, the game performances of individuals and teams.