2 resultados para excess Th-230
Resumo:
Wage stickiness is incorporated to a New-Keynesian model with variable capital to drive endogenous unemployment uctuations de ned as the log di¤erence between aggregate labor supply and aggregate labor demand. We estimated such model using Bayesian econometric techniques and quarterly U.S. data. The second-moment statistics of the unemployment rate in the model give a good t to those observed in U.S. data. Our results also show that wage-push shocks, demand shifts and monetary policy shocks are the three major determinants of unemployment fl uctuations. Compared to an estimated New-Keynesian model without unemployment (Smets and Wouters, 2007): wage stickiness is higher, labor supply elasticity is lower, the slope of the New-Keynesian Phillips curve is flatter, and the importance of technology innovations on output variability increases.
Resumo:
Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden. Methods: We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization. Results: Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south-north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918-19, but different factors explained mortality variation in each wave. Conclusions: A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918-19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality.