10 resultados para error monitoring
Resumo:
MELECON 2012 - 2012 16th IEEE Mediterranean Electrotechnical Conference, 25 Mar - 28 Mar 2012, Túnez
Resumo:
MELECON 2012 - 2012 16th IEEE Mediterranean Electrotechnical Conference, 25 Mar - 28 Mar 2012, Túnez
Resumo:
[ES]El objeto de este artículo es saber hasta qué punto pudo emplearse la justicia penal como un instrumento más de la política de carácter antijudío desarrollada por las autoridades cristianas de la España medieval a finales del siglo XV, concretamente en los momentos previos a la expulsión. Para indagar sobre esta cuestión se tendrá presente el proceso penal por blasfemia al que fue sometido el judío de Vitoria (Álava) Jato Tello.
Resumo:
Real time monitoring allows the determination of the line state and the calculation of the actual rating value. The real time monitoring systems measure sag, conductor tension, conductor temperature or weather related magnitudes. In this paper, a new ampacity monitoring system for overhead lines, based on the conductor tension, the ambient temperature, the solar radiation and the current intensity, is presented. The measurements are transmitted via GPRS to a control center where a software program calculates the ampacity value. The system takes into account the creep deformation experienced by the conductors during their lifetime and calibrates the tension-temperature reference and the maximum allowable temperature in order to obtain the ampacity. The system includes both hardware implementation and remote control software.
Resumo:
Low Voltage (LV) electricity distribution grid operations can be improved through a combination of new smart metering systems' capabilities based on real time Power Line Communications (PLC) and LV grid topology mapping. This paper presents two novel contributions. The first one is a new methodology developed for smart metering PLC network monitoring and analysis. It can be used to obtain relevant information from the grid, thus adding value to existing smart metering deployments and facilitating utility operational activities. A second contribution describes grid conditioning used to obtain LV feeder and phase identification of all connected smart electric meters. Real time availability of such information may help utilities with grid planning, fault location and a more accurate point of supply management.
Resumo:
Este trabajo se encuentra bajo la licencia Creative Commons Attribution 3.0.
Resumo:
El objeto del presente trabajo, titulado “Aplicación de redes neuronales artificiales para la caracterización del error en trayectorias circulares por WEDM”, es el estudio y posterior optimización del error en trayectorias circulares mecanizadas mediante electroerosión por hilo. Se pretende desarrollar un modelo predictivo de dicho error a través de la implementación de una Red Neuronal Artificial (RNA), que deberá ser alimentada con resultados empíricos resultantes de una batería de ensayos. El modelo desarrollado permitirá conocer a priori los errores que se producirán al cortar formas circulares en distintos espesores y con distintos radios sin necesidad de recurrir a costosas baterías de ensayos.
Resumo:
Background: Non-alcoholic fatty liver disease (NAFLD) is caused by abnormal accumulation of lipids within liver cells. Its prevalence is increasing in developed countries in association with obesity, and it represents a risk factor for non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Since NAFLD is usually asymptomatic at diagnosis, new non-invasive approaches are needed to determine the hepatic lipid content in terms of diagnosis, treatment and control of disease progression. Here, we investigated the potential of magnetic resonance imaging (MRI) to quantitate and monitor the hepatic triglyceride concentration in humans. Methods: A prospective study of diagnostic accuracy was conducted among 129 consecutive adult patients (97 obesity and 32 non-obese) to compare multi-echo MRI fat fraction, grade of steatosis estimated by histopathology, and biochemical measurement of hepatic triglyceride concentration (that is, Folch value). Results: MRI fat fraction positively correlates with the grade of steatosis estimated on a 0 to 3 scale by histopathology. However, this correlation value was stronger when MRI fat fraction was linked to the Folch value, resulting in a novel equation to predict the hepatic triglyceride concentration (mg of triglycerides/g of liver tissue = 5.082 + (432.104 * multi-echo MRI fat fraction)). Validation of this formula in 31 additional patients (24 obese and 7 controls) resulted in robust correlation between the measured and estimated Folch values. Multivariate analysis showed that none of the variables investigated improves the Folch prediction capacity of the equation. Obese patients show increased steatosis compared to controls using MRI fat fraction and Folch value. Bariatric surgery improved MRI fat fraction values and the Folch value estimated in obese patients one year after surgery. Conclusions: Multi-echo MRI is an accurate approach to determine the hepatic lipid concentration by using our novel equation, representing an economic non-invasive method to diagnose and monitor steatosis in humans.
Resumo:
[ES]En la actualidad el proceso de mecanizado mediante electroerosión por hilo (WEDM) posee varias problemáticas a la hora de la ejecución de los cortes para producir diferentes formas, ya sean esquinas, radios de redondeo o de acuerdo y por último la realización de círculos. Es por ello por lo que se elabora el presente trabajo cuya finalidad es llegar a caracterizar los errores cometidos en el corte de desbaste de probetas con trayectorias circulares y tecnología estándar. De esta manera se podrá cuantificar las desviaciones que se producen en las piezas en función del espesor y de sus radios. Toda la información obtenida en el trabajo permitirá una futura actuación en diversos parámetros máquina, elaborando nuevas tecnologías o bien poder mitigarlos realizando correcciones geométricas, ajustando sus tolerancias.
Resumo:
Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 mu m). In the case of surface finish, the absolute error is well below R-a 1 mu m (average value 0.32 mu m). The present approach can be easily generalized to other grinding operations.