2 resultados para error model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses a new method for describing dynamic comovement and persistence in economic time series which builds on the contemporaneous forecast error method developed in den Haan (2000). This data description method is then used to address issues in New Keynesian model performance in two ways. First, well known data patterns, such as output and inflation leads and lags and inflation persistence, are decomposed into forecast horizon components to give a more complete description of the data patterns. These results show that the well known lead and lag patterns between output and inflation arise mostly in the medium term forecasts horizons. Second, the data summary method is used to investigate a rich New Keynesian model with many modeling features to see which of these features can reproduce lead, lag and persistence patterns seen in the data. Many studies have suggested that a backward looking component in the Phillips curve is needed to match the data, but our simulations show this is not necessary. We show that a simple general equilibrium model with persistent IS curve shocks and persistent supply shocks can reproduce the lead, lag and persistence patterns seen in the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an extended version of the basic New Keynesian monetary (NKM) model which contemplates revision processes of output and inflation data in order to assess the importance of data revisions on the estimated monetary policy rule parameters and the transmission of policy shocks. Our empirical evidence based on a structural econometric approach suggests that although the initial announcements of output and inflation are not rational forecasts of revised output and inflation data, ignoring the presence of non well-behaved revision processes may not be a serious drawback in the analysis of monetary policy in this framework. However, the transmission of inflation-push shocks is largely affected by considering data revisions. The latter being especially true when the nominal stickiness parameter is estimated taking into account data revision processes.