2 resultados para eigenfunctions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new efficient numerical approach for representing anisotropic physical quantities and/or matrix elements defined on the Fermi surface (FS) of metallic materials. The method introduces a set of numerically calculated generalized orthonormal functions which are the solutions of the Helmholtz equation defined on the FS. Noteworthy, many properties of our proposed basis set are also shared by the FS harmonics introduced by Philip B Allen (1976 Phys. Rev. B 13 1416), proposed to be constructed as polynomials of the cartesian components of the electronic velocity. The main motivation of both approaches is identical, to handle anisotropic problems efficiently. However, in our approach the basis set is defined as the eigenfunctions of a differential operator and several desirable properties are introduced by construction. The method is demonstrated to be very robust in handling problems with any crystal structure or topology of the FS, and the periodicity of the reciprocal space is treated as a boundary condition for our Helmholtz equation. We illustrate the method by analysing the free-electron-like lithium (Li), sodium (Na), copper (Cu), lead (Pb), tungsten (W) and magnesium diboride (MgB2)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of dielectric theory, the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-potential states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by numerically solving the one-dimensional Schrodinger equation. The imagepotential state wave functions accumulate most of their probability outside the slab. We find that the random phase approximation (RPA) for the nonlocal dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters: the slab width and the electronic density. The theoretical calculations are compared with experimental results for the work function and image-potential states obtained by two-photon photoemission.