4 resultados para effective field theory
Resumo:
We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F (R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
We study the entanglement in a chain of harmonic oscillators driven out of equilibrium by preparing the two sides of the system at different temperatures, and subsequently joining them together. The steady state is constructed explicitly and the logarithmic negativity is calculated between two adjacent segments of the chain. We find that, for low temperatures, the steady-state entanglement is a sum of contributions pertaining to left-and right-moving excitations emitted from the two reservoirs. In turn, the steady-state entanglement is a simple average of the Gibbs-state values and thus its scaling can be obtained from conformal field theory. A similar averaging behaviour is observed during the entire time evolution. As a particular case, we also discuss a local quench where both sides of the chain are initialized in their respective ground states.
Resumo:
129 p.
Resumo:
In this work we calibrate two different analytic models of semilocal strings by constraining the values of their free parameters. In order to do so, we use data obtained from the largest and most accurate field theory simulations of semilocal strings to date, and compare several key properties with the predictions of the models. As this is still work in progress, we present some preliminary results together with descriptions of the methodology we are using in the characterisation of semilocal string networks.