3 resultados para dust aerosol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4-7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results: The nebulization system produced relatively large amounts of aerosol ranging between 0.3 +/- 0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0 +/- 0.1 ml/min for distilled water (H(2)Od) at 6 bar, with MMADs between 2.61 +/- 0.1 mu m for PFD at 7 bar and 10.18 +/- 0.4 mu m for FC-75 at 6 bar. The deposition study showed that for surfactant and H(2)Od aerosols, the highest percentage of the aerosolized mass (similar to 65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH(2)O only increased total airway pressure by 1.59 cmH(2)O at the highest driving pressure (7 bar). Conclusion: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto es establecer, mediante un prediseño, las especificaciones y requisitos que deberá cumplir el sistema para satisfacer las necesidades que tiene el Centro Nacional de Verificación de Maquinaria del Instituto Nacional de Seguridad e Higiene en el Trabajo, detectar cuáles serían las mejores soluciones para su configuración y realizar una preselección de los componentes principales para preparar un informe que permitan cuantificar el esfuerzo necesario para el diseño, adquisición de componentes, montaje y puesta en marcha del equipo. Este informe deberá recoger información de las distintas opciones para generar estas mezclas en condiciones de presión, temperatura y humedad seleccionadas y proponer un diseño preliminar que abarque la etapa de generación aerosol/vapor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we discuss the possibility of cosmic defects being responsible for the B-mode signal measured by the BICEP2 collaboration. We also allow for the presence of other cosmological sources of B-modes such as inflationary gravitational waves and polarized dust foregrounds, which might contribute to or dominate the signal. On the one hand, we find that defects alone give a poor fit to the data points. On the other, we find that defects help to improve the fit at higher multipoles when they are considered alongside inflationary gravitational waves or polarized dust. Finally, we derive new defect constraints from models combining defects and dust. This proceeding is based on previous works [1, 2].