7 resultados para distributed nonlinearity
Resumo:
This doctoral Thesis defines and develops a new methodology for feeder reconfiguration in distribution networks with Distributed Energy Resources (DER). The proposed methodology is based on metaheuristic Ant Colony Optimization (ACO) algorithms. The methodology is called Item Oriented Ant System (IOAS) and the doctoral Thesis also defines three variations of the original methodology, Item Oriented Ant Colony System (IOACS), Item Oriented Max-min Ant System (IOMMAS) y Item Oriented Max-min Ant Colony System (IOACS). All methodologies pursue a twofold objective, to minimize the power losses and maximize DER penetration in distribution networks. The aim of the variations is to find the algorithm that adapts better to the present optimization problem, solving it most efficiently. The main feature of the methodology lies in the fact that the heuristic information and the exploitation information (pheromone) are attached to the item not to the path. Besides, the doctoral Thesis proposes to use feeder reconfiguration in order to increase the distribution network capacity of accepting a major degree of DER. The proposed methodology and its three variations have been tested and verified in two distribution networks well documented in the existing bibliography. These networks have been modeled and used to test all proposed methodologies for different scenarios with various DER penetration degrees.
Resumo:
Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16 degrees C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.
Resumo:
The aim of this research study has been to design a gain scheduling (GS) digital controller in order to control the voltage of an islanded microgrid in the presence of fast varying loads (FVLs), and to compare it to a robust controller. The inverter which feeds the microgrid is connected to it through an inductance-capacitor-inductance (LCL) filter. The oscillatory and nonlinear behaviour of the plant is analyzed in the whole operating zone. Afterwards, the design of the controllers which contain two loops in cascade are described. The first loop concerns the current control, while the second is linked to the voltage regulation. Two controllers, one defined as Robust and another one as GS controller, are designed for the two loops, emphasizing in their robustness and their ability to damp the oscillatory plant behaviour. To finish, some simulations are carried out to study and compare the two kinds of controllers in different operating points. The results show that both controllers damp the oscillatory behaviour of the plant in closed loop (CL), and that the GS controller ensures a better rejection of current disturbances from FVLs.
Resumo:
139 p.
Resumo:
This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.
Resumo:
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.
Resumo:
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round Robin Q-learning (D-RR-QL) algorithm for cooperative systems. The computational complexity of this algorithm increases linearly with the number of agents. Moreover, it eliminates environment non sta tionarity by carrying a round-robin scheduling of the action selection and execution. That this learning scheme allows the implementation of Modular State-Action Vetoes (MSAV) in cooperative multi-agent systems, which speeds up learning convergence in over-constrained systems by vetoing state-action pairs which lead to undesired termination states (UTS) in the relevant state-action subspace. Each agent's local state-action value function learning is an independent process, including the MSAV policies. Coordination of locally optimal policies to obtain the global optimal joint policy is achieved by a greedy selection procedure using message passing. We show that D-RR-QL improves over state-of-the-art approaches, such as Distributed Q-Learning, Team Q-Learning and Coordinated Reinforcement Learning in a paradigmatic Linked Multi-Component Robotic System (L-MCRS) control problem: the hose transportation task. L-MCRS are over-constrained systems with many UTS induced by the interaction of the passive linking element and the active mobile robots.