18 resultados para decomposition techniques
Resumo:
In this paper we introduce four scenario Cluster based Lagrangian Decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the four Lagrange multiplier updating procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario clusters and different dimensions of the original problem. Our computational experience shows that the CLD bound and its computational effort depend on the number of scenario clusters to consider. In any case, our results show that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. All the procedures have been implemented in a C++ experimental code. A broad computational experience is reported on a test of randomly generated instances by using the MIP solvers COIN-OR and CPLEX for the auxiliary mixed 0-1 cluster submodels, this last solver within the open source engine COIN-OR. We also give computational evidence of the model tightening effect that the preprocessing techniques, cut generation and appending and parallel computing tools have in stochastic integer optimization. Finally, we have observed that the plain use of both solvers does not provide the optimal solution of the instances included in the testbed with which we have experimented but for two toy instances in affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained by other means for the original stochastic problem.
Resumo:
8 p.
Resumo:
La tesis se ha centrado en la síntesis y caracterización estructural de materiales tipo perovskita: SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni,Fe) y ALn2CuTi2O9 (A=Ca,Ba; Ln=La,Pr,Nd,Sm). El estudio de las estructuras de los materiales se ha realizado mediante el análisis de los patrones de difracción en polvo de rayos-X, sincrotrón y/o neutrones. En el refinamiento por el método de Rietveld de las estructuras se han sustituido las coordenadas atómicas (el método más común), por coordenadas colectivas: las amplitudes de los modos que describen la distorsión de la fase prototipo. Los resultados generales para la serie SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni) a temperatura ambiente se ha recogido en un diagrama en el que se han indicado las amplitudes de los modos que transforman de acuerdo a las irreps en función del factor de tolerancia, ya que todos ellos cristalizan en la misma fase monoclínica (P21/n); y a temperaturas altas se ha construido un diagrama de fase. Los materiales SrLnFeRuO6 ( Ln=La,Pr,Nd) y CaLn2CuTi2O9 cristalizan en la fase ortorrómbica Pbnm a temperatura ambiente; mientras que BaLn2CuTi2O9 tienen una estructura más simétrica, I4/mcm. A altas temperaturas se han identificado las transiciones de fase inducidas por el cambio de temperatura.A temperaturas bajas se han analizado las estructuras magnéticas de algunos de los compuestos mediante difracción de neutrones.
Resumo:
Although blogs exist from the beginning of the Internet, their use has considerablybeen increased in the last decade. Nowadays, they are ready for being used bya broad range of people. From teenagers to multinationals, everyone can have aglobal communication space.Companies know blogs are a valuable publicity tool to share information withthe participants, and the importance of creating consumer communities aroundthem: participants come together to exchange ideas, review and recommend newproducts, and even support each other. Also, companies can use blogs for differentpurposes, such as a content management system to manage the content of websites,a bulletin board to support communication and document sharing in teams,an instrument in marketing to communicate with Internet users, or a KnowledgeManagement Tool. However, an increasing number of blog content do not findtheir source in the personal experiences of the writer. Thus, the information cancurrently be kept in the user¿s desktop documents, in the companies¿ catalogues,or in another blogs. Although the gap between blog and data source can be manuallytraversed in a manual coding, this is a cumbersome task that defeats the blog¿seasiness principle. Moreover, depending on the quantity of information and itscharacterisation (i.e., structured content, unstructured content, etc.), an automaticapproach can be more effective.Based on these observations, the aim of this dissertation is to assist blog publicationthrough annotation, model transformation and crossblogging techniques.These techniques have been implemented to give rise to Blogouse, Catablog, andBlogUnion. These tools strive to improve the publication process considering theaforementioned data sources.
Resumo:
DNA microarray, or DNA chip, is a technology that allows us to obtain the expression level of many genes in a single experiment. The fact that numerical expression values can be easily obtained gives us the possibility to use multiple statistical techniques of data analysis. In this project microarray data is obtained from Gene Expression Omnibus, the repository of National Center for Biotechnology Information (NCBI). Then, the noise is removed and data is normalized, also we use hypothesis tests to find the most relevant genes that may be involved in a disease and use machine learning methods like KNN, Random Forest or Kmeans. For performing the analysis we use Bioconductor, packages in R for the analysis of biological data, and we conduct a case study in Alzheimer disease. The complete code can be found in https://github.com/alberto-poncelas/ bioc-alzheimer
Resumo:
Radar services are occasionally affected by wind farms. This paper presents a comprehensive description of the effects that a wind farm may cause on the different radar services, and it compiles a review of the recent research results regarding the mitigation techniques to minimize this impact. Mitigation techniques to be applied at the wind farm and on the radar systems are described. The development of thorough impact studies before the wind farm is installed is presented as the best way to analyze in advance the potential for interference, and subsequently identify the possible solutions to allow the coexistence of wind farms and radar services.
Resumo:
Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.
Resumo:
This paper presents a vaccination strategy for fighting against the propagation of epidemic diseases. The disease propagation is described by an SEIR (susceptible plus infected plus infectious plus removed populations) epidemic model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes the contacts among susceptible and infected more difficult. The vaccination strategy is based on a continuous-time nonlinear control law synthesised via an exact feedback input-output linearization approach. An observer is incorporated into the control scheme to provide online estimates for the susceptible and infected populations in the case when their values are not available from online measurement but they are necessary to implement the control law. The vaccination control is generated based on the information provided by the observer. The control objective is to asymptotically eradicate the infection from the population so that the removed-by-immunity population asymptotically tracks the whole one without precise knowledge of the partial populations. The model positivity, the eradication of the infection under feedback vaccination laws and the stability properties as well as the asymptotic convergence of the estimation errors to zero as time tends to infinity are investigated.
Resumo:
This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT tecniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 degrees C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU).
Resumo:
Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.
Resumo:
[EN] Language Down the Garden Path traces the lines of research that grew out of Bever's classic paper. Leading scientists review over 40 years of debates on the factors at play in language comprehension, production, and acquisition (the role of prediction, grammar, working memory, prosody, abstractness, syntax and semantics mapping); the current status of universals and narrow syntax; and virtually every topic relevant in psycholinguistics since 1970. Written in an accessible and engaging style, the book will appeal to all those interested in understanding the questions that shaped, and are still shaping, this field and the ways in which linguists, cognitive scientists, psychologists, and neuroscientists are seeking to answer them.
Resumo:
65 p.
Resumo:
250 p. + anexos
Resumo:
These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques.