6 resultados para cyclin dependent kinase inhibitor 2B
Resumo:
1-42 beta-Amyloid (A beta(1-42)) peptide is a key molecule involved in the development of Alzheimer's disease. Some of its effects are manifested at the neuronal morphological level. These morphological changes involve loss of neurites due to cytoskeleton alterations. However, the mechanism of A beta(1-42) peptide activation of the neurodegenerative program is still poorly understood. Here, A beta(1-42) peptide-induced transduction of cellular death signals through the phosphatidylinositol 3-kinase (PI3K)/phosphoinositol- dependent kinase (PDK)/novel protein kinase C (nPKC)/Rac 1 axis is described. Furthermore, pharmacological inhibition of PDK1 and nPKC activities blocks Rac 1 activation and neuronal cell death. Our results provide insights into an unsuspected connection between PDK1, nPKCs and Rac 1 in the same signal-transduction pathway and points out nPKCs and Rac 1 as potential therapeutic targets to block the toxic effects of A beta(1-42) peptide in neurons.
Resumo:
Linker histone H1 plays an important role in chromatin folding. Phosphorylation by cyclin-dependent kinases is the main post-translational modification of histone H1. We studied the effects of phosphorylation on the secondary structure of the DNA-bound H1 carboxy-terminal domain (CTD), which contains most of the phosphorylation sites of the molecule. The effects of phosphorylation on the secondary structure of the DNA-bound CTD were site-specific and depended on the number of phosphate groups. Full phosphorylation significantly increased the proportion of -structure and decreased that of -helix. Partial phosphorylation increased the amount of undefined structure and decreased that of -helix without a significant increase in -structure. Phosphorylation had a moderate effect on the affinity of the CTD for the DNA, which was proportional to the number of phosphate groups. Partial phosphorylation drastically reduced the aggregation of DNA fragments by the CTD, but full phosphorylation restored to a large extent the aggregation capacity of the unphosphorylated domain. These results support the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of H1 partial phosphorylation in interphase chromatin relaxation. More generally, our results suggest that the effects of phosphorylation are mediated by specific structural changes and are not simply a consequence of the net charge.
Resumo:
Background: The presence of EGFR kinase domain mutations in a subset of NSCLC patients correlates with the response to treatment with the EGFR tyrosine kinase inhibitors gefitinib and erlotinib. Although most EGFR mutations detected are short deletions in exon 19 or the L858R point mutation in exon 21, more than 75 different EGFR kinase domain residues have been reported to be altered in NSCLC patients. The phenotypical consequences of different EGFR mutations may vary dramatically, but the majority of uncommon EGFR mutations have never been functionally evaluated. Results: We demonstrate that the relative kinase activity and erlotinib sensitivity of different EGFR mutants can be readily evaluated using transfection of an YFP-tagged fragment of the EGFR intracellular domain (YFP-EGFR-ICD), followed by immunofluorescence microscopy analysis. Using this assay, we show that the exon 20 insertions Ins770SVD and Ins774HV confer increased kinase activity, but no erlotinib sensitivity. We also show that, in contrast to the common L858R mutation, the uncommon exon 21 point mutations P848L and A859T appear to behave like functionally silent polymorphisms. Conclusion: The ability to rapidly obtain functional information on EGFR variants of unknown relevance using the YFP-EGFR-ICD assay might prove important in the future for the management of NSCLC patients bearing uncommon EGFR mutations. In addition, our assay may be used to determine the response of resistant EGFR mutants to novel second-generation TKIs.
Resumo:
[EN] Protein Kinase G (PKG) or cGMP-dependent protein kinases (PKG) have been shown to play an important role in resistance to abiotic stressors such as high temperatures or oxygen deprivation in Drosophila melanogaster. In Drosophila, the foraging gene encodes a PKG; natural variants for this gene exist, which differ in the level of expression of PKG: rovers (forR allele) which express high PKG levels, and sitters (forS allele) which express lower PKG levels. This project explores the differences in recovery from short periods of anoxia between natural variants (focusing on forS2, flies with a sitter gene in a rover background), as well as mutants with insertions in the foraging gene and RNAi recombinants that show a reduced PKG expression. The parameters measured were time to recovery and level of activity after anoxia. The results showed lower activity after anoxia in sitters than in rovers, reflecting a worse recovery from the anoxic coma in flies with lower PKG levels.
Resumo:
9 p.
Resumo:
15 p.