4 resultados para chemical synthesis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Power Point presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce solid coordination frameworks (SCF) which are crystalline materials based on connections between metal ions through organic ligands. In this sense, combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures. In this context, this work is focused on two novel CuII-based SCFs exhibiting PDC (2,5-pyridinedicarboxylate) and bpa (1,2-di(4-pyridyl)ethane), being the first structures reported in literature containing both ligands. Chemical formula are [Cu2[(PDC)2(bpa)(H2O)2]•3H2O•DMF (1), and [Cu2(PDC)2(bpa)(H2O)2]•7H2O (2), where DMF is dimethylformamide. Compounds 1 and 2 have been characterized by means of XRD, IR, TG/DTG, and DTA analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Póster presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipids are essential constituents of contemporary living cells, serving as structural molecules that are necessary to form membranous compartments. Amphiphilic lipid-like molecules may also have contributed to prebiotic chemical evolution by promoting the synthesis, aggregation and cooperative encapsulation of other biomolecules. The resulting compartments would allow systems of molecules to be maintained that represent microscopic experiments in a natural version of combinatorial chemistry. Here we address these possibilities and describe recent results related to interactions between amphiphiles and other biomolecules during early evolution toward the first living cells.