19 resultados para XYZ compliant parallel mechanism
Resumo:
[ES]Por lo tanto el objetivo de este trabajo es resolver el problema de posición de un manipulador paralelo analizando los movimientos parásitos y la influencia de los mismos sobre el problema. Para ello inicialmente se realizará un modelo del manipulador en un programa de CAD. Posteriormente se resolverán las ecuaciones de posición y se implementará esta resolución en un programa de cálculo como MATLAB. Finalmente se compararán los resultados obtenidos con un manipulador de características similares pero una configuración ligeramente distinta.
Resumo:
The aim of this technical report is to present some detailed explanations in order to help to understand and use the Message Passing Interface (MPI) parallel programming for solving several mixed integer optimization problems. We have developed a C++ experimental code that uses the IBM ILOG CPLEX optimizer within the COmputational INfrastructure for Operations Research (COIN-OR) and MPI parallel computing for solving the optimization models under UNIX-like systems. The computational experience illustrates how can we solve 44 optimization problems which are asymmetric with respect to the number of integer and continuous variables and the number of constraints. We also report a comparative with the speedup and efficiency of several strategies implemented for some available number of threads.
Resumo:
Astrocytes are fundamental for brain homeostasis and the progression and outcome of many neuropathologies including Alzheimer's disease (AD). In the triple transgenic mouse model of AD (3xTg-AD) generalised hippocampal astroglia atrophy precedes a restricted and specific beta-amyloid (A beta) plaque-related astrogliosis. Astrocytes are critical for CNS glutamatergic transmission being the principal elements of glutamate homeostasis through maintaining its synthesis, uptake and turnover via glutamate-glutamine shuttle. Glutamine synthetase (GS), which is specifically expressed in astrocytes, forms glutamine by an ATP-dependent amination of glutamate. Here, we report changes in GS astrocytic expression in two major cognitive areas of the hippocampus (the dentate gyrus, DG and the CA1) in 3xTg-AD animals aged between 9 and 18 months. We found a significant reduction in Nv (number of cell/mm(3)) of GS immunoreactive (GS-IR) astrocytes starting from 12 months (28.59%) of age in the DG, and sustained at 18 months (31.65%). CA1 decrease of GS-positive astrocytes Nv (33.26%) occurs at 18 months. This Nv reduction of GSIR astrocytes is paralleled by a decrease in overall GS expression (determined by its optical density) that becomes significant at 18 months (21.61% and 19.68% in DG and CA1, respectively). GS-IR Nv changes are directly associated with the presence of A beta deposits showing a decrease of 47.92% as opposed to 23.47% in areas free of A beta. These changes in GS containing astrocytes and GS-immunoreactivity indicate AD-related impairments of glutamate homeostatic system, at the advanced and late stages of the disease, which may affect the efficacy of glutamatergic transmission in the diseased brain that may contribute to the cognitive deficiency.
Resumo:
Introduction: Our purpose was to assess how pairs of sibling horseshoe bats coexists when their morphology and echolocation are almost identical. We collected data on echolocation, wing morphology, diet, and habitat use of sympatric Rhinolophus mehelyi and R. euryale. We compared our results with literature data collected in allopatry with similar protocols and at the same time of the year (breeding season). Results:Echolocation frequencies recorded in sympatry for R. mehelyi (mean = 106.8 kHz) and R. euryale (105.1 kHz) were similar to those reported in allopatry (R. mehelyi 105–111 kHz; R. euryale 101–109 kHz). Wing parameters were larger in R. mehelyi than R. euryale for both sympatric and allopatric conditions. Moths constitute the bulk of the diet of both species in sympatry and allopatry, with minor variation in the amounts of other prey. There were no inter-specific differences in the use of foraging habitats in allopatry in terms of structural complexity, however we found inter-specific differences between sympatric populations: R. mehelyi foraged in less complex habitats. The subtle inter-specific differences in echolocation frequency seems to be unlikely to facilitate dietary niche partitioning; overall divergences observed in diet may be explained as a consequence of differential prey availability among foraging habitats. Inter-specific differences in the use of foraging habitats in sympatry seems to be the main dimension for niche partitioning between R. mehelyi and R. euryale, probably due to letter differences in wing morphology. Conclusions: Coexistence between sympatric sibling horseshoe bats is likely allowed by a displacement in spatial niche dimension, presumably due to the wing morphology of each species, and shifts the niche domains that minimise competition. Effective measures for conservation of sibling/similar horseshoe bats should guarantee structural diversity of foraging habitats.
Resumo:
[EN] The aims of this work were (i) to evaluate the potential of nanostructured lipid carriers (NLCs) as a tool to 24 enhance the oral bioavailability of poorly soluble compounds using saquinavir (SQV), a BCS class IV drug 25 and P-gp substrate as a model drug, and (ii) to study NLC transport mechanisms across the intestinal barrier. 26 Three different NLC formulations were evaluated. SQV transport across Caco-2 monolayers was enhanced up 27 to 3.5-fold by NLCs compared to SQV suspension. M cells did not enhance the transport of NLCs loaded with 28 SQV. The size and amount of surfactant in the NLCs influenced SQV's permeability, the transcytosis pathway 29 and the efflux of SQV by P-gp. An NLC of size 247 nm and 1.5% (w/v) surfactant content circumvented P-gp 30 efflux and used both caveolae- and clathrin-mediated transcytosis, in contrast to the other NLC formulations, 31 which used only caveolae-mediated transcytosis. By modifying critical physicochemical parameters of the 32 NLC formulation, we were thus able to overcome the P-gp drug efflux and alter the transcytosis mechanism 33 of the nanoparticles. These findings support the use of NLCs approaches for oral delivery of poorly 34 water-soluble P-gp substrates.
Resumo:
[ES]El objetivo principal del presente Trabajo Fin de Grado es diseñar un interpolador de trayectorias y programarlo en Labview. Para ello, se ha de analizar primeramente la cinemática del mecanismo a utilizar, un robot de cinemática paralela 5R, y calcular su espacio de trabajo. Después, se deducirán y programarán diversos perfiles de velocidades (trapezoidal de velocidades, trapezoidal de aceleraciones y sinusoidal) para moverse en rectas, así como el movimiento en curvas mediante splines. También se hallarán experimentalmente las características de los motores disponibles y se averiguarán las velocidades máximas que puede alcanzar el mecanismo. Así podremos presentar un software que sirva para generar trayectorias para el robot 5R. Se presentan también, entre otros, el presupuesto del proyecto y los riesgos en los que se puede incurrir. El documento finaliza con unos anexos de planos CAD, resultados y código de programación.
Resumo:
167 p.
Resumo:
[ES]El presente Trabajo de Fin de Grado tiene la finalidad de contribuir al desarrollo de una línea de investigación mediante la implementación de un sistema neumático de agarre al mecanismo de cinemática paralela 5R. Dicho proyecto se integra dentro de una línea de investigación basada en el desarrollo y estudio de mecanismos de este tipo. Así, este Trabajo supone una pequeña parte de un proyecto de mayor envergadura, para cuyo éxito será necesaria la colaboración con otros investigadores y la integración de este trabajo al realizado por ellos. Consiste en diseñar, fabricar y controlar un sistema neumático de agarre al mecanismo 5R. El diseño se realizará sopesándose las distintas alternativas que existen, teniéndose en cuenta las limitaciones impuestas por el 5R. En el diseño se escogen los componentes correctos para conseguir que el sistema realice sus dos funciones: Agarrar piezas. Movimiento en el eje z que le permita desplazar el objeto. Antes del ensamblaje de los componentes neumáticos, y teniendo en cuenta el diseño realizado, se fabricarán las piezas necesarias para poder integrarlo al 5R y para, a su vez, juntar los componentes entre sí. A continuación, se desarrollará un programa informático para poder controlar el sistema. Finalmente, para verificar su correcto funcionamiento, se realizarán las pruebas pertinentes.
Desarrollo de software para la realización de ensayos dinámicos de mecanismos de cinemática paralela
Resumo:
[ES]El presente Trabajo de Fin de Grado tiene como objetivo contribuir al desarrollo de un proyecto de investigación mediante la programación y control del movimiento de mecanismos de cinemática paralela para la realización de ensayos dinámicos. Dicho proyecto está enmarcado dentro de una línea de investigación del grupo de investigación CompMech de la UPV-‐EHU que gira en torno al desarrollo y estudio de este tipo de mecanismos. Esto es; este trabajo, más allá de la utilidad que pudiera tener por sí mismo, está pensado para formar parte de un proyecto de mayor envergadura, para cuyo éxito será imprescindible la colaboración con otros investigadores y la integración de este trabajo con los realizados por ellos. Consiste en la creación de un software para el control y movimiento de mecanismos, generando vibraciones para la realización de ensayos dinámicos. Para ello, se programarán sobre la plataforma LabVIEW la interfaz de usuario y el motor de cálculo. Una vez se compruebe que el programa funciona correctamente, se integrará dentro de un programa principal, un control articular que será el encargado de comunicarse con la máquina. Posteriormente, se procederá a la realización de ensayos experimentales sobre los propios robots, en taller. Se tomarán medidas mediante acelerómetros y otros dispositivos, determinando las medidas más adecuadas para su correcta validación. Finalmente, se generalizará el trabajo realizado para posibilitar su empleo futuro en diferentes mecanismos
Resumo:
[ES]Este proyecto tiene como objetivo desarrollar una línea de investigación de opciones de sensorización de un mecanismo mediante acelerómetros. Se construirá para ello un sistema de adquisición y tratamiento de señales destinado a la sensorización de un mecanismo de cinemática paralela en base a los conocimientos adquiridos durante el curso. Se trabajará además con otros alumnos para llevar a cabo el diseño y montaje de un robot prototipo de cinemática paralela de dos grados de libertad sobre el que se experimentará y llevará a cabo el proyecto. Se plantean de este modo dos líneas de trabajo que se desarrollarán en este proyecto: Elaboración de un sistema de adquisición y tratamiento de señales adaptable a distintos sensores. Utilización de señales de múltiples acelerómetros para conocer en primer lugar aceleración, y de ser posible, posición de puntos de interés del mecanismo.
Resumo:
[ES]Este trabajo presenta un algoritmo automatizado cuyo resultado es la determinación de las ganancias óptimas del lazo de control de un mecanismo de cinemática paralela. En concreto se ha aplicado al mecanismo 5R, aunque el método es válido para cualquier otro mecanismo introduciendo el modelo mecatrónico correspondiente. Permite disponer de un procedimiento para poder elegir en un futuro la combinación de motor y reductora más apropiada para un determinado mecanismo evitando realizar adquisiciones sobredimensionadas, como ocurrió con el mecanismo en cuestión.
Resumo:
[ES]Este Trabajo Fin de Grado está enmarcado dentro de un proyecto del grupo de investigación CompMech. El proyecto consiste en el diseño y construcción de un mecanismo de cinemática paralela para ensayos dinámicos. Este trabajo fin de grado engloba las tareas necesarias para el estudio del espacio de trabajo del mecanismo y la determinación de las dimensiones más apropiadas desde consideraciones cinemáticas. Se partirá de tres posibles mecanismos, de los que más adelante se seleccionará uno con el que terminar el ciclo de diseño. Para ello el primer paso es el análisis cinemático de los mecanismos. Se resolverán los problemas de posición y de velocidades, que serán los necesarios para el posterior estudio del espacio de trabajo. La resolución de estos problemas se programará en un programa Matlab. Después se obtendrán los espacios de trabajo de cada uno de los mecanismos, así como las posiciones singulares dentro del mismo, y su variación ante variaciones en las dimensiones. Será también de interés determinar las regiones del espacio de trabajo en las que más fácil es efectuar el movimiento del mecanismo. Conocidos los espacios de trabajo de cada mecanismo y su variabilidad con cambios en las dimensiones, se elegirá el mecanismo más apropiado para continuar con el ciclo de diseño. Para la elección se tendrán también en cuenta consideraciones adicionales aportadas por otros miembros del grupo.
Resumo:
150 p.
Resumo:
In this paper, the architectures of three degrees of freedom (3-DoF) spatial, fully parallel manipulators (PMs), whose limbs are structurally identical, are obtained systematically. To do this, the methodology followed makes use of the concepts of the displacement group theory of rigid body motion. This theory works with so-called 'motion generators'. That is, every limb is a kinematic chain that produces a certain type of displacement in the mobile platform or end-effector. The laws of group algebra will determine the actual motion pattern of the end-effector. The structural synthesis is a combinatorial process of different kinematic chains' topologies employed in order to get all of the 3-DoF motion pattern possibilities in the end-effector of the fully parallel manipulator.
Resumo:
[Es]El objetivo principal de este Trabajo Fin de Grado consiste en calcular los movimientos que son necesarios en los actuadores de la plataforma de un mecanismo de cinemática paralela, a fin de poder localizar la pieza en la posición adecuada para poder llevar a cabo la operación de microfresado de la misma. Para desarrollar el proyecto se necesitará un software de programación como es Matlab. Este trabajo surge de la necesidad de dar soporte a un proyecto mayor que consiste en el diseño de un manipulador de cinemática paralela cuyas juntas funcionan por deformación. Se pretende que mientras la herramienta se encuentra inmóvil, se consiga el microfresado de moldes para la fabricación de microlentes mediante el movimiento del manipulador. Se ha resuelto la cinemática inversa y se ha calculado el espacio de trabajo. En este documento se van a presentar las tareas, el presupuesto y los riesgos del proyecto así como unos anexos en los que se incluirá el código de la programación.