2 resultados para Word Sense Disambiguation
Resumo:
[EN]Measuring semantic similarity and relatedness between textual items (words, sentences, paragraphs or even documents) is a very important research area in Natural Language Processing (NLP). In fact, it has many practical applications in other NLP tasks. For instance, Word Sense Disambiguation, Textual Entailment, Paraphrase detection, Machine Translation, Summarization and other related tasks such as Information Retrieval or Question Answering. In this masther thesis we study di erent approaches to compute the semantic similarity between textual items. In the framework of the european PATHS project1, we also evaluate a knowledge-base method on a dataset of cultural item descriptions. Additionaly, we describe the work carried out for the Semantic Textual Similarity (STS) shared task of SemEval-2012. This work has involved supporting the creation of datasets for similarity tasks, as well as the organization of the task itself.
Resumo:
[EN] One universal feature of human languages is the division between grammatical functors and content words. From a learnability point of view, functors might provide entry points or anchors into the syntactic structure of utterances due to their high frequency. Despite its potentially universal scope, this hypothesis has not yet been tested on typologically different languages and on populations of different ages. Here we report a corpus study and an artificial grammar learning experiment testing the anchoring hypothesis in Basque, Japanese, French, and Italian adults. We show that adults are sensitive to the distribution of functors in their native language and use them when learning new linguistic material. However, compared to infants’ performance on a similar task, adults exhibit a slightly different behavior, matching the frequency distributions of their native language more closely than infants do. This finding bears on the issue of the continuity of language learning mechanism.