7 resultados para Tripartite entanglement
Resumo:
Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger-type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties.
Resumo:
We study the entanglement in a chain of harmonic oscillators driven out of equilibrium by preparing the two sides of the system at different temperatures, and subsequently joining them together. The steady state is constructed explicitly and the logarithmic negativity is calculated between two adjacent segments of the chain. We find that, for low temperatures, the steady-state entanglement is a sum of contributions pertaining to left-and right-moving excitations emitted from the two reservoirs. In turn, the steady-state entanglement is a simple average of the Gibbs-state values and thus its scaling can be obtained from conformal field theory. A similar averaging behaviour is observed during the entire time evolution. As a particular case, we also discuss a local quench where both sides of the chain are initialized in their respective ground states.
Resumo:
Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed numerical routines. First prototype implementations easily allow reconstruction of a state of 20 qubits in a few minutes on a standard computer
Resumo:
We study quantum state tomography, entanglement detection and channel noise reconstruction of propagating quantum microwaves via dual-path methods. The presented schemes make use of the following key elements: propagation channels, beam splitters, linear amplifiers and field quadrature detectors. Remarkably, our methods are tolerant to the ubiquitous noise added to the signals by phase-insensitive microwave amplifiers. Furthermore, we analyse our techniques with numerical examples and experimental data, and compare them with the scheme developed in Eichler et al (2011 Phys. Rev. Lett. 106 220503; 2011 Phys. Rev. Lett. 107 113601), based on a single path. Our methods provide key toolbox components that may pave the way towards quantum microwave teleportation and communication protocols.
Resumo:
79 p.
Resumo:
A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.
Resumo:
Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z(2) parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.