5 resultados para Train control
Resumo:
Nowadays, train control in-lab simulation tools play a crucial role in reducing extensive and expensive on-site railway testing activities. In this paper, we present our contribution in this arena by detailing the internals of our European Railway Train Management System in-lab demonstrator. This demonstrator is built over a general-purpose simulation framework, Riverbed Modeler, previously Opnet Modeler. Our framework models both ERTMS subsystems, the Automatic Train Protection application layer based on movement authority message exchange and the telecommunication subsystem based on GSM-R communication technology. We provide detailed information on our modelling strategy. We also validate our simulation framework with real trace data. To conclude, under current industry migration scenario from GSM-R legacy obsolescence to IP-based heterogeneous technologies, our simulation framework represents a singular tool to railway operators. As an example, we present the assessment of related performance indicators for a specific railway network using a candidate replacement technology, LTE, versus current legacy technology. To the best of our knowledge, there is no similar initiative able to measure the impact of the telecommunication subsystem in the railway network availability.
Resumo:
[ES]La interoperabilidad entre distintas redes ferroviarias europeas es muy escasa. Para dar solución a este problema, la Unión Europea creó el sistema europeo de gestión del tráfico ferroviario (ERTMS), encargado de crear un estándar único para toda la red europea. El objetivo de este proyecto es la implementación del sistema ETCS ( European Train Control System ) en un entorno cliente-servidor. La implementación incluye el sistema del tren y el del centro de control (RBC). Se ha implementado de forma que se pueda operar sobre dos protocolos de red transporte, de forma que será compatible tanto para redes orientadas a la conexión (TCP) como no orientadas a conexión (UDP).
Resumo:
Trabajo realizado en la empresa CAF Power&Automation
Resumo:
The evolution of the railway sector depends, to a great extent, on the deployment of advanced railway signalling systems. These signalling systems are based on communication architectures that must cope with complex electromagnetical environments. This paper is outlined in the context of developing the necessary tools to allow the quick deployment of these signalling systems by contributing to an easier analysis of their behaviour under the effect of electromagnetical interferences. Specifically, this paper presents the modelling of the Eurobalise-train communication flow in a general purpose simulation tool. It is critical to guarantee this communication link since any lack of communication may lead to a stop of the train and availability problems. In order to model precisely this communication link we used real measurements done in a laboratory equipped with elements defined in the suitable subsets. Through the simulation study carried out, we obtained performance indicators of the physical layer such as the received power, SNR and BER. The modelling presented in this paper is a required step to be able to provide quality of service indicators related to perturbed scenarios.
Resumo:
The paper studies the influence of rail weld dip on wheel-rail contact dynamics, with particular reference to freight trains where it is important to increase the operating speed and also the load transported. This has produced a very precise model, albeit simple and cost-effective, which has enabled train-track dynamic interactions over rail welds to be studied to make it possible to quantify the influence on dynamic forces and displacements of the welding geometry; of the position of the weld relative to the sleeper; of the vehicle's speed; and of the axle load and wheelset unsprung mass. It is a vertical model on the spatial domain and is drawn up in a simple fashion from vertical track receptances. For the type of track and vehicle used, the results obtained enable the quantification of increases in wheel-rail contact forces due to the new speed and load conditions.