3 resultados para Toolkit


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the extent to which a biased transmission of educational endowments affects fertility. To this end, we devise a version of Becker’s family decision model that takes preference change into account. Specifically, we model education as an instrument that increases the autonomy (to prefer), and autonomy as an instrument of preference-change for household-structures. The empirical validity of the proposed model is examined for the European setting using the European Community Household Panel. In the context of the model, empirical findings imply the following. On the one hand, both preference for quantity and preference for bequest for each offspring (quality) increases with education, while preference for current consumption decreases. On the other hand, education is found to be negatively correlated with fertility, at a decreasing rate. Therefore, the paper provides a useful additional toolkit for public policy evaluation. It explains how public policies oriented toward the guarantee of personal freedoms, such as the expansion of education and autonomy, are likely to guarantee the same freedoms for subsequent generations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES] El objetivo del trabajo es la construcción de diferentes carteras compuestas por activos numismáticos de oro y metales nobles (oro, plata, platino, paladio y rodio); con el fin de construir aquella cartera que mejor se adapte al inversor, acorde a su perfil y conocer cuál es la Cartera del Mercado. Para ello, mediante la Teoría de Carteras (Markowitz, 1952; 1959), construiremos la Frontera Eficiente y trazaremos la Línea del Mercado de Capitales o CML.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.