3 resultados para Survival Model
Resumo:
Background: Recently, with the access of low toxicity biological and targeted therapies, evidence of the existence of a long-term survival subpopulation of cancer patients is appearing. We have studied an unselected population with advanced lung cancer to look for evidence of multimodality in survival distribution, and estimate the proportion of long-term survivors. Methods: We used survival data of 4944 patients with non-small-cell lung cancer (NSCLC) stages IIIb-IV at diagnostic, registered in the National Cancer Registry of Cuba (NCRC) between January 1998 and December 2006. We fitted one-component survival model and two-component mixture models to identify short-and long-term survivors. Bayesian information criterion was used for model selection. Results: For all of the selected parametric distributions the two components model presented the best fit. The population with short-term survival (almost 4 months median survival) represented 64% of patients. The population of long-term survival included 35% of patients, and showed a median survival around 12 months. None of the patients of short-term survival was still alive at month 24, while 10% of the patients of long-term survival died afterwards. Conclusions: There is a subgroup showing long-term evolution among patients with advanced lung cancer. As survival rates continue to improve with the new generation of therapies, prognostic models considering short-and long-term survival subpopulations should be considered in clinical research.
Resumo:
[EN] Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer’s disease (AD) induced by a combination of toxic amyloid-β peptide (Aβ) and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret), an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1) mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU), doublecortin (DCX), and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD.
Resumo:
Autism and Alzheimer's disease (AD) are, respectively, neurodevelopmental and degenerative diseases with an increasing epidemiological burden. The AD-associated amyloid-beta precursor protein-alpha has been shown to be elevated in severe autism, leading to the 'anabolic hypothesis' of its etiology. Here we performed a focused microarray analysis of genes belonging to NOTCH and WNT signaling cascades, as well as genes related to AD and apoptosis pathways in cerebellar samples from autistic individuals, to provide further evidence for pathological relevance of these cascades for autism. By using the limma package from R and false discovery rate, we demonstrated that 31% (116 out of 374) of the genes belonging to these pathways displayed significant changes in expression (corrected P-values <0.05), with mitochondria- related genes being the most downregulated. We also found upregulation of GRIN1, the channel-forming subunit of NMDA glutamate receptors, and MAP3K1, known activator of the JNK and ERK pathways with anti-apoptotic effect. Expression of PSEN2 (presinilin 2) and APBB1 (or F65) were significantly lower when compared with control samples. Based on these results, we propose a model of NMDA glutamate receptor-mediated ERK activation of alpha-secretase activity and mitochondrial adaptation to apoptosis that may explain the early brain overgrowth and disruption of synaptic plasticity and connectome in autism. Finally, systems pharmacology analyses of the model that integrates all these genes together (NOWADA) highlighted magnesium (Mg2+) and rapamycin as most efficient drugs to target this network model in silico. Their potential therapeutic application, in the context of autism, is therefore discussed.