8 resultados para Supersymmetric formalism
Resumo:
Spanish Relativity Meeting (ERE 2014) Valencia, SPAIN, SEP 01-05, 2014
Resumo:
The problem discussed is the stability of two input-output feedforward and feedback relations, under an integral-type constraint defining an admissible class of feedback controllers. Sufficiency-type conditions are given for the positive, bounded and of closed range feed-forward operator to be strictly positive and then boundedly invertible, with its existing inverse being also a strictly positive operator. The general formalism is first established and the linked to properties of some typical contractive and pseudocontractive mappings while some real-world applications and links of the above formalism to asymptotic hyperstability of dynamic systems are discussed later on.
Resumo:
This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given.
Resumo:
IARD 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields - Galileo Galilei Inst Theoret Phys (GGI), Florence, ITALY - MAY 29-JUN 01, 2012. Edited by:Horowitz, LP
Resumo:
[EN]In this report we present the tags we use when annotating the gold standard of syntactic functions and the decisions taken during its annotation. The gold standard is a necessary resource to evaluate the rulebased surface syntactic parser (the one based on the Constraint Grammar formalism), and, moreover, it can be useful to develop and evaluate statistical parsers. The tags we are presenting here follow the Constraint Grammar (CG) formalism (Karlsson et al., 1995). In fact, last experiments show that good results have been obtained when parsing with CG (Karlsson et al., 1995; Samuelsson and Voutilainen,1997; Tapanainen and Järvinen, 1997; Bick, 2000).
Resumo:
139 p.
Resumo:
In the framework of dielectric theory, the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-potential states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by numerically solving the one-dimensional Schrodinger equation. The imagepotential state wave functions accumulate most of their probability outside the slab. We find that the random phase approximation (RPA) for the nonlocal dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters: the slab width and the electronic density. The theoretical calculations are compared with experimental results for the work function and image-potential states obtained by two-photon photoemission.
Resumo:
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.