4 resultados para Strong Fuzzy Negations
Resumo:
Background : Thrombotic antiphospholipid syndrome is defined as a complex form of thrombophilia that is developed by a fraction of antiphospholipid antibody (aPLA) carriers. Little is known about the genetic risk factors involved in thrombosis development among aPLA carriers. Methods: To identify new loci conferring susceptibility to thrombotic antiphospholipid syndrome, a two-stage genotyping strategy was performed. In stage one, 19,000 CNV loci were genotyped in 14 thrombotic aPLA+ patients and 14 healthy controls by array-CGH. In stage two, significant CNV loci were fine-mapped in a larger cohort (85 thrombotic aPLA+, 100 non-thrombotic aPLA+ and 569 healthy controls). Results : Array-CGH and fine-mapping analysis led to the identification of 12q24.12 locus as a new susceptibility locus for thrombotic APS. Within this region, a TAC risk haplotype comprising one SNP in SH2B3 gene (rs3184504) and two SNPs in ATXN2 gene (rs10774625 and rs653178) exhibited the strongest association with thrombotic antiphospholipid syndrome (p-value = 5,9 × 10−4 OR 95% CI 1.84 (1.32–2.55)). Conclusion : The presence of a TAC risk haplotype in ATXN2-SH2B3 locus may contribute to increased thrombotic risk in aPLA carriers.
Resumo:
En la presente tesis se ha realizado el estudio de primeros principios (esto es, sinhacer uso de parámetros ajustables) de la estructura electrónica y la dinámica deexcitaciones electrónicas en plomo, tanto en volumen como en superficie y en formade películas de espesor nanométrico. Al presentar el plomo un número atómico alto(82), deben tenerse en cuenta los efectos relativistas. Con este fin, el doctorando haimplementado el acoplo espín-órbita en los códigos computacionales que hanrepresentado la principal herramienta de trabajo.En volumen, se han encontrado fuertes efectos relativistas asi como de lalocalización de los electrones, tanto en la respuesta dieléctrica (excitacioneselectrónicas colectivas) como en el tiempo de vida de electrones excitados. Lacomparación de nuestros resultados con medidas experimentales ha ayudado aprofundizar en dichos efectos.En el estudio de las películas a escala nanométrica se han hallado fuertes efectoscuánticos debido al confinamiento de los estados electrónicos. Dichos efectos semanifiestan tanto en el estado fundamental (en acuerdo con estudiosexperimentales), como en la respuesta dieléctrica a través de la aparición y dinámicade plasmones de diversas características. Los efectos relativistas, a pesar de no serimportantes en la estructura electrónica de las películas, son los responsables de ladesaparación del plasmón de baja energía en nuestros resultados.
Resumo:
This paper investigates some properties of cyclic fuzzy maps in metric spaces. The convergence of distances as well as that of sequences being generated as iterates defined by a class of contractive cyclic fuzzy mapping to fuzzy best proximity points of (non-necessarily intersecting adjacent subsets) of the cyclic disposal is studied. An extension is given for the case when the images of the points of a class of contractive cyclic fuzzy mappings restricted to a particular subset of the cyclic disposal are allowed to lie either in the same subset or in its next adjacent one.
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.