7 resultados para Stone walls
Resumo:
[ES] La documentación contenida en este registro ha servido de base para los siguientes documentos:
Resumo:
[ES] Este proyecto fin de carrera está realacionado con el siguiente proyecto de documentación de un elemento patrimonial:
Resumo:
JEMS 2012 - Joint European Magnetic Symposia edited by Tiberto, P; Affronte, M; Casoli, F; Fernandez, CD; Gubbiotti, G; Marquina, C; Pratt, F; Solzi, M; Tacchi, S; Vavassori, P. 6th Joint European Magnetic Symposia (JEMS) Parma, ITALY SEP 09-14, 2012
Resumo:
[EN]Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.
Resumo:
[EN] This paper is based in the following project:
Resumo:
Fundacion Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.
Resumo:
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.