9 resultados para Stokes, Teorema de
Resumo:
El objetivo de este proyecto es construir un banco de prácticas destinado al y análisis del impacto de un chorro contra diferentes obstáculos y estudiar dicho efecto mediante el teorema de cantidad de movimiento. Para ello se ha diseñado un prototipo basado en el banco instalado en la Escuela Técnica Superior de Ingenieros de Bilbao. Las diferentes piezas necesarias para la construcción del prototipo se realizaran mediante diferentes medios, algunas de ellas se encargaran a órganos externos a la escuela y otras se fabricaran con equipo disponible en el propio centro. Para el diseño se han tenido en cuenta parámetros y cálculos como los de la instalación hidráulica.
Resumo:
121 p.
Resumo:
El proyecto tiene como objetivo el estudio de las propiedades más importantes de las matrices doblemente estocásticas y algunas aplicaciones. Se comienza analizando algunas propiedades espectrales de las matrices no negativas de las que aquellas son un caso particular y se demuestra, en particular, el Teorema de Perron-Frobenius. Posteriormente se discute en detalle la relación entre las matrices doblemente estocásticas y la mayorización de vectores reales y el importante teorema de Birkhoff. El proyecto finaliza desarrollando algunas aplicaciones de este tipo de matrices.
Resumo:
En esta tesis estudiamos las teorías sobre la Matriz Densidad Reducida (MDR) como un marco prometedor. Nos enfocamos sobre esta teorías desde dos aspectos: Primero, usamos algunos modelos sencillos hechos con dos partículas las cuales estan armónicamente confinadas como una base para ilustrar la utilidad de la matriz densidad. Para tales sistemas, usamos la MDR de un cuerpo para calcular algunas cantidades de interés tales como densidad de momentum. Posteriormente obtenemos los orbitales naturales y su número de ocupación para algunos de los modelos, y en uno de los casos expresamos la MDR de dos cuerpos de manera exacta en términos de la MDR de un cuerpo. También usamos el teorema diferencial del virial para establecer una descripción unificada de la familia entera de estos sistemas modelo en términos de la densidad. En la seguna parte cambiamos a casos fuera del equilibrio y analizamos la así llamada jerarquía BBGKY de ecuaciones para describir la evolución temporal de un sistema de muchos cuerpos en términos de sus MDRs (a todos los órdenes). Proveemos un exhaustivo estudio de los desafíos y problemas abiertos ligados a la truncación de tales jerarquías de ecuaciones para hacerlas aplicables. Restringimos nuestro análisis a la evolución acoplada de la MDR de uno y dos cuerpos, donde los efectos de correlación de alto orden estan embebidos dentro de la aproximación usada para cerrar las ecuaciones. Probamos que dentro de esta aproximación, el número de electrones y la energía total se conservan, sin importar la aproximación usada. Luego, demostramos que aplicando los esquemas de truncación de estado base para llevar los electrones a comportamientos indeseables y no físicos, tales como la violación e incluso la divergencia en la densidad electrónica local, tanto en regímenes correlacionados débiles y fuertes.
Resumo:
Hasteko, lehenengo Kapituluan Talde Teoriako oinarrizko kontzeptuak gogoratuko dira. Baita, garrantzi handia duen finituki sortuak diren talde abeldarren egitura teorema estudiatuko da. Memoria honen Bigarren Kapituluan, Sylow-en Teoremen ezagutza aztertuko da eta Sylow-en Teoremen ondorio interesgarri bat guztiz garatuta aurkeztuko da, aplikazio gisa. Orain, Hirugarren Kapituluan guretzat guztiz berria den gai bat aztertuko da: talde nilpotenteak, hain zuzen ere. Azkenik, lanaren Laugarren Kapitulua hiru zatitan banatuko da: alde batetik, talde ebazgarrien oinarriak, Pi-taldeak eta bukatzeko, talde ebazgarri finituen Hall-en Pi-azpitaldeak.
Resumo:
165 p.
Resumo:
According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (u(z)) and azimuthal (u(circle minus)) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry. This is a powerful result, since it reduces the highly complex flow to merely four parameters. In the present work, corresponding computer simulations using Reynolds-Averaged Navier-Stokes equations have been carried out and compared to the experimental observations. The main objective of this study is to investigate how well the simulations can reproduce the physics of the flow and if the same analytical model can be applied. Using this model, parametric studies can be significantly reduced and, further, reliable simulations can substantially reduce the costs of the parametric studies themselves.
Resumo:
Las ideas básicas de la teoría de los espacios de Hilbert tienen como origen diversos problemas del análisis funcional, entre los cuales podemos citar los relativos a ciertas ecuaciones integrales lineales. Concretamente, un precedente de los métodos de la teoría espectral de operadores fue precisamente el enfoque de I. Fredholm de resolución de ciertas ecuaciones integrales mediante la teoría de matrices y determinantes infinitos utilizando el método de coeficientes indeterminados. Imitando la técnica de von Koch para desarrollar determinantes infinitos, Fredholm desarrolló su famoso teorema de alternativa en la resolución de las ecuaciones que llevan su nombre. Algunos tipos de ecuaciones integrales lineales están relacionados con operadores acotados completamente continuos y la teoría espectral para esta clase de operadores se podrá aplicar en la resolución de estas ecuaciones. En esta memoria se estudian distintos aspectos de estas y otras ecuaciones integrales. En el capítulo 1 se definen los conceptos básicos necesarios para el seguimiento de la misma, como es la de operador lineal y sus propiedades. Se distingue una clase importante de operadores, los compactos. Y se demuestra que todo operador integral pertenece a esta clase de operadores. En los capítulos 2 y 3 se introduce el concepto de ecuación integral, diferenciando las de Fredholm de las de Volterra, y se estudian diferentes técnicas de resolución de dichas ecuaciones, como son el teorema de alternativa, el teorema espectral para operadores compactos y autoadjuntos, ecuaciones integrales con núcleos degenerados y resolución por el método de aproximaciones sucesivas. Para finalizar, en el apéndice se resuelven algunos ejercicios utilizando los diferentes métodos estudiados.
Resumo:
[es]Podemos encontrar las ecuaciones de Boussinesq en la descripción de playas, rios y lagos. Estas ecuaciones estudian la dinámica de las aguas poco profundas como las ecuaciones “ Korteweg-deVries (KdV)". Sin embargo, a pesar de ser más conocidas, las ecuaciones de KdV, no son capaces de modelar olas solitarias propagándose en distintas direcciones. Entre muchas otras aplicaciones de las ecuaciones de Boussinesq destaca la de modelar olas de tsunamis. Estos tipos de olas ya son perfectamente descritos por las ecuaciones de Navier Stokes, pero todavía no existen técnicas que permitan resolverlas en un dominio tridimensional. Para ello se usan las ecuaciones de Boussinesq, pensadas como una simplificación de las ecuaciones de Navier Stokes. Los años 1871 y 1872 fueron muy importantes para el desarrollo de las ecuaciones de Boussinesq. Fue en 1871 cuando Valentin Joseph Boussinesq recibió el premio de la “Academy of Sciences”, por su trabajo dedicado a las aguas poco profundas. Ahí fue donde Boussinesq introdujo por primera vez los efectos dispersivos en las ecuaciones de Saint-Venant. Por ello, se puede decir que las ecuaciones de Boussinesq son más completas físicamente que las ecuaciones de Saint-Venant. Las ecuaciones de Boussinesq contienen una estructura hiperbólica (al igual que las ecuaciones no lineales de aguas poco profundas) combinada con derivadas de orden elevado para modelar la dispersión de la ola. Las ecuaciones de Boussinesq pueden aparecer de muchas formas distintas. Dependiendo de como hayamos escogido la variable de la velocidad podemos obtener un modelo u otro. El caso más usual es escoger la variable velocidad en un nivel del agua arbitrario. La efectividad de la ecuación de Boussinesq seleccionada variará dependiendo de la dispersión. Una buena elección de la variable velocidad puede mejorar significativamente la modelización de la propagación de ondas largas. Formalmente, como veremos en el capítulo 1, podemos transformar términos de orden elevado en términos de menor orden usando las relaciones asintóticas. Esto nos proporciona una forma elegante de mejorar las relaciones de dispersi\'on. Las ecuaciones de Boussinesq más conocidas son las que resolveremos en el capítulo 2. En dicho capítulo veremos la ecuación cúbica de Boussinesq, que sirve para describir el movimiento de ondas largas en aguas poco profundas; las ecuaciones de Boussinesq acopladas, que describen el movimiento de dos fluidos distintos en aguas poco profundas (como puede ser el caso de un barco que desprende accidentalmente aceite, el aceite va creando una capa que flota encima de la superficie del agua); la ecuación de Boussinesq estándar, que describe un gran número de fenómenos de olas dispersivas no lineales como la propagaci\ón en ambas direcciones de olas largas en la superficie de aguas poco profundas. Pero en olas de longitud de onda corta presenta una inestabilidad y la ecuación es incorrecta para el problema de Cauchy, por ello Bogolubsky propuso la ecuación de Boussinesq mejorada. Esta ecuación es la última que estudiaremos en el capítulo 2 y es una ecuación físicamente estable, correcta para el problema de Cauchy y además como veremos en el capítulo 3, apropiada para las simulaciones numéricas. Como ya indicado, en el capi tulo 1 deduciremos las ecuaciones de Boussinesq a partir de las ecuaciones físicas del flujo potencial. El objetivo principal es deducir dos modelos de ecuaciones de Boussinesq acopladas y obtener su relación de dispersión. Para llegar a ello, se usa un método de la expansión asintótica de la velocidad potencial en términos de un pequeño parámetro. De esta manera conseguimos dos modelos distintos, cada uno asociado a uno de los dos modelo de disipación que hemos establecido. Por último dado que las ecuaciones siempre vienen dadas en variables dimensionales, volveremos a la notación dimensional para analizar la relación de dispersión de las ecuaciones de Boussinesq disipativas. En el capí tulo 2 pasaremos a su resolución analítica, buscando soluciones de tipo solitón. Introduciremos el método de la tangente hiperbólica, muy útil para encontrar soluciones exactas de ecuaciones no lineales. Usaremos este método para resolver la ecuación cúbica de Boussinesq, un sistema de ecuaciones acopladas de Boussinesq, la ecuación estandar de Boussinesq y la mejorada. Los sistemas que aparecen en la aplicación del método de la tangente hiperbólica estan resueltos usando el software Mathematica y uno de ellos irá incluido en el apéndice A. En el capíulo 3 se introduce un esquema en diferencias finitas, que sirve para convertir problemas de ecuaciones diferenciales en problemas algebraicos fácilmente resolubles numéricamente. Este método nos ayudaráa estudiar la estabilidad y a resolver la ecuación mejorada de Boussinesq numéricamente en dos ejemplos distintos. En el apéndice B incluiremos el programa para la resolución numérica del primer ejemplo con el Mathematica.