6 resultados para Species availability
Resumo:
Introduction: Our purpose was to assess how pairs of sibling horseshoe bats coexists when their morphology and echolocation are almost identical. We collected data on echolocation, wing morphology, diet, and habitat use of sympatric Rhinolophus mehelyi and R. euryale. We compared our results with literature data collected in allopatry with similar protocols and at the same time of the year (breeding season). Results:Echolocation frequencies recorded in sympatry for R. mehelyi (mean = 106.8 kHz) and R. euryale (105.1 kHz) were similar to those reported in allopatry (R. mehelyi 105–111 kHz; R. euryale 101–109 kHz). Wing parameters were larger in R. mehelyi than R. euryale for both sympatric and allopatric conditions. Moths constitute the bulk of the diet of both species in sympatry and allopatry, with minor variation in the amounts of other prey. There were no inter-specific differences in the use of foraging habitats in allopatry in terms of structural complexity, however we found inter-specific differences between sympatric populations: R. mehelyi foraged in less complex habitats. The subtle inter-specific differences in echolocation frequency seems to be unlikely to facilitate dietary niche partitioning; overall divergences observed in diet may be explained as a consequence of differential prey availability among foraging habitats. Inter-specific differences in the use of foraging habitats in sympatry seems to be the main dimension for niche partitioning between R. mehelyi and R. euryale, probably due to letter differences in wing morphology. Conclusions: Coexistence between sympatric sibling horseshoe bats is likely allowed by a displacement in spatial niche dimension, presumably due to the wing morphology of each species, and shifts the niche domains that minimise competition. Effective measures for conservation of sibling/similar horseshoe bats should guarantee structural diversity of foraging habitats.
Resumo:
La contaminación del suelo es una de las principales amenazas para los ecosistemas y la salud humana. Actualmente, desde un punto de vista tanto económico como ambiental, la fitoestabilización es la mejor tecnología para remediar suelos contaminados con elevadas concentraciones de metales como son los suelos mineros. La fitoestabilización asistida consiste en el empleo de plantas y enmiendas orgánicas y/o inorgánicas con el fin de reducir la movilidad y la biodisponibilidad de los contaminantes y recuperar la salud de suelo. En este trabajo se han realizado ensayos en microcosmos y en campo centrándonos en la salud del suelo minero contaminado con Pb y Zn durante un proceso de fitoestabilización empleando enmiendas orgánicas (purines vacunos, gallinaza, estiércol de oveja y lodos de papelera mezclados con gallinaza) y/o la especie metalífera Festuca rubra con el objetivo de (i) estudiar las interacciones suelo-enmienda responsables de los cambios inducidos por el proceso de quimioestabilización en las propiedades físicoquímicas y biológicas del suelo, (ii) evaluar la efectividad del proceso de fitoestabilización sobre suelos vegetados y de la revegetación sobre suelos desnudos (iii) valorar la idoneidad de distintos indicadores químicos y biológicos (parámetros microbianos y de la vegetación) para monitorizar la efectividad de la fitoestabilización asistida en términos de reducción de la biodisponibilidad de metales en el suelo, mejora de la vegetación y de la recuperación de la salud del suelo. La aplicación de enmiendas al suelo minero supone una entrada de materia orgánica y nutrientes que conduce a una disminución de la biodisponibilidad de metales, facilitando la colonización de las plantas y el crecimiento de la vegetación nativa, además de estimular la actividad microbiana del suelo. El pH del suelo es un factor crítico que condiciona la movilidad de los metales y la toxicidad del suelo. Las poblaciones microbianas de las enmiendas no modificaron la diversidad funcional de las comunidades microbianas nativas de la mina. Los purines vacunos y los lodos de papelera mezclados con gallinaza son los tratamientos más efectivos en el proceso de fitoestabilización asistida bajo condiciones de campo. La gallinaza fue el tratamiento que más estimuló el crecimiento de la vegetación nativa y la colonización en los suelos desnudos. El bioensayo de elongación radical de lechuga es un test sensible, sencillo y barato para evaluar la biodisponibilidad de metal y la ecotoxicidad del suelo. Los tocoferoles son biomarcadores de exposición a metales con potencial para su implementación en bioensayos de toxicidad. Este trabajo permite concluir que la población metalífera de F. rubra, combinada con enmiendas orgánicas, es una excelente candidata para los proyectos de fitoestabilización asistida. Además, la monitorización simultánea de los parámetros fisicoquímicos y microbiológicos del suelo y de su ecotoxicidad permite una evaluación adecuada de la salud del suelo, así como la selección de enmiendas apropiadas para el desarrollo de un proceso fitoestabilizador.
Resumo:
Background: Budesonide has a long history as intranasal drug, with many marketed products. Efforts should be made to demonstrate the therapeutic equivalence and safety comparability between them. Given that systemic availability significantly varies from formulations, the clinical comparability of diverse products comes to be of clinical interest and a regulatory requirement. The aim of the present study was to compare the systemic availability, pharmacodynamic effect, and safety of two intranasal budesonide formulations for the treatment of rhinitis. Methods: Eighteen healthy volunteers participated in this randomised, controlled, crossover, clinical trial. On two separated days, subjects received a single dose of 512 mu g budesonide (4 puffs per nostril) from each of the assayed devices (Budesonida nasal 64 (R), Aldo-Union, Spain and Rhinocort 64 (R), AstraZeneca, Spain). Budesonide availability was determined by the measurement of budesonide plasma concentration. The pharmacodynamic effect on the hypothalamic-adrenal axis was evaluated as both plasma and urine cortisol levels. Adverse events were tabulated and described. Budesonide availability between formulations was compared by the calculation of 90% CI intervals of the ratios of the main pharmacokinetic parameters describing budesonide bioavailability. Plasma cortisol concentration-time curves were compared by means of a GLM for Repeated Measures. Urine cortisol excretion between formulations was compared through the Wilcoxon's test. Results: All the enroled volunteers successfully completed the study. Pharmacokinetic parameters were comparable in terms of AUC(t) (2.6 +/- 1.5 vs 2.2 +/- 0.7), AUCi (2.9 +/- 1.5 vs 2.4 +/- 0.7), t(max) (0.4 +/- 0.1 vs 0.4 +/- 0.2), C(max)/AUC(i) (0.3 +/- 0.1 vs 0.3 +/- 0.0), and MRT (5.0 +/- 1.4 vs 4.5 +/- 0.6), but not in the case of C(max) (0.9 +/- 0.3 vs 0.7 +/- 0.2) and t(1/2) (3.7 +/- 1.8 vs 2.9 +/- 0.4). The pharmacodynamic effects, measured as the effect over plasma and urine cortisol, were also comparables between both formulations. No severe adverse events were reported and tolerance was comparable between formulations. Conclusion: The systemic availability of intranasal budesonide was comparable for both formulations in terms of most pharmacokinetic parameters. The pharmacodynamic effect on hypothalamic-pituitary-adrenal axis was also similar. Side effects were scarce and equivalent between the two products. This methodology to compare different budesonide-containing devices is reliable and easy to perform, and should be recommended for similar products intented to be marketed or already on the market.
Resumo:
Albacore and Atlantic Bluefin tuna are two pelagic fish. Atlantic Bluefin tuna is included in the IUCN red list of threatened species and albacore is considered to be near threatened, so conservation plans are needed. However, no genomic resources are available for any of them. In this study, to better understand their transcriptome we functionally annotated orthologous genes. In all, 159 SNPs distributed in 120 contigs of the muscle transcriptome were analyzed. Genes were predicted for 98 contigs (81.2%) using the bioinformatics tool BLAST. In addition, another bioinformatics tool, BLAST2GO was used in order to achieve GO terms for the genes, in which 41 sequences were given a biological process, and 39 sequences were given a molecular process. The most repeated biological process was metabolism and it is important that no cellular process was given in any of the sequences. The most abundant molecular process was binding and very few catalytic activity processes were given. From the initial 159 SNPs, 40 were aligned with a sequence in the database after BLAST2GO was run, and were polymorphic in Atlantic Bluefin tuna and monomorphic in albacore. From these 40 SNPs, 24 were located in an open reading frame of which four were non-synonymous and 20 were synonymous and 16 were not located in a known open reading frame,. This study provides information for better understanding the ecology and evolution of these species and this is important in order to establish a proper conservation plan and an appropriate management.
Resumo:
Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale.
Resumo:
Three new species of Lumbriculidae were collected from floodplain seeps and small streams in southeastern North America. Some of these habitats are naturally acidic. Sylphella puccoon gen. n., sp. n. has prosoporous male ducts in X-XI, and spermathecae in XII-XIII. Muscular, spherical atrial ampullae and acuminate penial sheaths distinguish this monotypic new genus from other lumbriculid genera having similar arrangements of reproductive organs. Cookidrilus pocosinus sp. n. resembles its two subterranean, Palearctic congeners in the arrangement of reproductive organs, but is easily distinguished by the position of the spermathecal pores in front of the chaetae in X-XIII. Stylodrilus coreyi sp. n. differs from congeners having simple-pointed chaetae and elongate atria primarily by the structure of the male duct and the large clusters of prostate cells. Streams and wetlands of Southeastern USA have a remarkably high diversity of endemic lumbriculids, and these poorly-known invertebrates should be considered in conservation efforts.