5 resultados para Solving problems
Resumo:
In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article proposes an interactive teaching sequence introducing the topic of electromagnetic induction. The sequence has been designed based on contributions from physics education research. Particular attention is paid to the relationship between experimental findings (macroscopic level) and theoretical interpretation (microscopic level). An example of the activities that have been designed will also be presented, describing the implementation context and the corresponding findings. Since implementing the sequence, a considerable number of students have a more satisfactory grasp of the electromagnetic induction explicative model. However, difficulties are manifested in aspects that require a multilevel explanation, referring to deep structures where the system description is better defined.
Resumo:
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Resumo:
The aim of this technical report is to present some detailed explanations in order to help to understand and use the Message Passing Interface (MPI) parallel programming for solving several mixed integer optimization problems. We have developed a C++ experimental code that uses the IBM ILOG CPLEX optimizer within the COmputational INfrastructure for Operations Research (COIN-OR) and MPI parallel computing for solving the optimization models under UNIX-like systems. The computational experience illustrates how can we solve 44 optimization problems which are asymmetric with respect to the number of integer and continuous variables and the number of constraints. We also report a comparative with the speedup and efficiency of several strategies implemented for some available number of threads.
Resumo:
In this work we extend to the multistage case two recent risk averse measures for two-stage stochastic programs based on first- and second-order stochastic dominance constraints induced by mixed-integer linear recourse. Additionally, we consider Time Stochastic Dominance (TSD) along a given horizon. Given the dimensions of medium-sized problems augmented by the new variables and constraints required by those risk measures, it is unrealistic to solve the problem up to optimality by plain use of MIP solvers in a reasonable computing time, at least. Instead of it, decomposition algorithms of some type should be used. We present an extension of our Branch-and-Fix Coordination algorithm, so named BFC-TSD, where a special treatment is given to cross scenario group constraints that link variables from different scenario groups. A broad computational experience is presented by comparing the risk neutral approach and the tested risk averse strategies. The performance of the new version of the BFC algorithm versus the plain use of a state-of-the-artMIP solver is also reported.
Resumo:
210 p.