5 resultados para Soft magnetic materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1-30 mu m in diameter) have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m) with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR) and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When the in-plane bias magnetic field acting on a flat circular magnetic dot is smaller than the saturation field, there are two stable competing magnetization configurations of the dot: the vortex and the quasi-uniform (C-state). We measured microwave absorption properties in an array of non-interacting permalloy dots in the frequency range 1-8 GHz when the in-plane bias magnetic field was varied in the region of the dot magnetization state bi-stability. We found that the microwave absorption properties in the vortex and quasi-uniform stable states are substantially different, so that switching between these states in a fixed bias field can be used for the development of reconfigurable microwave magnetic materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic vortex that consists of an in-plane curling magnetization configuration and a needle-like core region with out-of-plane magnetization is known to be the ground state of geometrically confined submicron soft magnetic elements. Here magnetodynamics of relatively thick (50-100 nm) circular Ni80Fe20 dots were probed by broadband ferromagnetic resonance in the absence of external magnetic field. Spin excitation modes related to the thickness dependent vortex core gyrotropic dynamics were detected experimentally in the gigahertz frequency range. Both analytical theory and micromagnetic simulations revealed that these exchange dominated modes are flexure oscillations of the vortex core string with n = 0,1,2 nodes along the dot thickness. The intensity of the mode with n = 1 depends significantly on both dot thickness and diameter and in some cases is higher than the one of the uniform mode with n = 0. This opens promising perspectives in the area of spin transfer torque oscillators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4-dicarboxylic acid (H(2)abd) as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs) have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.