7 resultados para Simulated experiment
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.
Resumo:
The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5 degrees C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology
Resumo:
Paper was revised on 2009-11-11.-- Published as article in: Rationality and Society (2009), 21(2), 1-24.
Resumo:
[EN]The present doctoral thesis centers on studying pyrolysis as a chemical recycling technique for rejected packaging waste fractions coming from separation and sorting plants. The pyrolysis experiments have been carried out in a lab-scale installation equipped with a 3.5 L semi-batch reactor and a condensation and collection system for the liquids and gases generated. In the present thesis, an experimental study on the conventional pyrolysis process applied to the aforementioned waste fractions has been conducted, as well as the study of non-conventional or advanced pyrolysis processes such as catalytic and stepwise pyrolysis. The study of the operating parameters has been carried out using a mixed plastics simulated sample, the composition of which is similar to that found in real fractions, and subsequently the optimized process has been applied to real packaging waste. An exhaustive characterization of the solids, liquids and gases obtained in the process has been made after each experiment and their potential uses have been established. Finally, an empirical model that will predict the pyrolysis yields (% organic liquid, % aqueous liquid, % gases, % char, % inorganic solid) as a function of the composition of the initial sample has been developed. As a result of the experimental work done, the requirements have been established for an industrial packaging waste pyrolysis plant that aims to be sufficiently versatile as to generate useful products regardless of the nature of the raw material.
Resumo:
We investigate a version of the classic Colonel Blotto game in which individual battles may have different values. Two players allocate a fixed budget across battlefields and each battlefield is won by the player who allocates the most to that battlefield. The winner of the game is the player who wins the battlefields with highest total value. We focus on the case where there is one large and several small battlefields, such that a player wins if he wins the large and any one small battlefield, or all the small battlefields. We compute the mixed strategy equilibrium for these games and compare this with choices from a laboratory experiment. The equilibrium predicts that the large battlefield receives more than a proportional share of the resources of the players, and that most of the time resources should be spread over more battlefields than are needed to win the game. We find support for the main qualitative features of the equilibrium. In particular, strategies that spread resources widely are played frequently, and the large battlefield receives more than a proportional share in the treatment where the asymmetry between battlefields is stronger.
Resumo:
One of the main problems that public institutions face in the management of protected areas, such as the European Natura 2000 network, is determining how to design and implement sustainable management plans that account for the wide range of marketed and non-marketed benefits they provide to society. This paper presents an application of a stated preference valuation approach aimed at evaluating the social preferences of the population of the Basque Country, Spain, for the key attributes of a regional Natura 2000 network site. According to our results, individuals’ willingness-to-pay (WTP) is higher for attributes associated with non-use values (native tree species and biodiversity conservation) than for attributes associated with use values (agricultural development and commercial forestry). The paper concludes that management policies related to Natura 2000 network sites should account for both for the importance of non-use values and the heterogeneity of the population's preferences in order to minimize potential land use conflicts.
Resumo:
31 p.