2 resultados para Self-research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] 3D microfluidic device fabrication methods are normally quite expensive and tedious. In this paper, we present an easy and cheap alternative wherein thin cyclic olefin polymer (COP) sheets and pressure sensitive adhesive(PSA) were used to fabricate hybrid 3D microfluidic structures, by the Origami technique, which enables the fabrication of microfluidic devices without the need of any alignment tool. The COP and PSA layers were both cut simultaneously using a portable, low-cost plotter allowing for rapid prototyping of a large variety of designs in a single production step. The devices were then manually assembled using the Origami technique by simply combining COP and PSA layers and mild pressure. This fast fabrication method was applied, as proof of concept, to the generation of a micromixer with a 3D-stepped serpentine design made of ten layers in less than 8 min. Moreover, the micromixer was characterized as a function of its pressure failure, achieving pressures of up to 1000 mbar. This fabrication method is readily accessible across a large range of potential end users, such as educational agencies (schools,universities), low-income/developing world research and industry or any laboratory without access to clean room facilities, enabling the fabrication of robust, reproducible microfluidic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, Power grids are critical infrastructures on which everything else relies, and their correct behavior is of the highest priority. New smart devices are being deployed to be able to manage and control power grids more efficiently and avoid instability. However, the deployment of such smart devices like Phasor Measurement Units (PMU) and Phasor Data Concentrators (PDC), open new opportunities for cyber attackers to exploit network vulnerabilities. If a PDC is compromised, all data coming from PMUs to that PDC is lost, reducing network observability. Our approach to solve this problem is to develop an Intrusion detection System (IDS) in a Software-defined network (SDN). allowing the IDS system to detect compromised devices and use that information as an input for a self-healing SDN controller, which redirects the data of the PMUs to a new, uncompromised PDC, maintaining the maximum possible network observability at every moment. During this research, we have successfully implemented Self-healing in an example network with an SDN controller based on Ryu controller. We have also assessed intrinsic vulnerabilities of Wide Area Management Systems (WAMS) and SCADA networks, and developed some rules for the Intrusion Detection system which specifically protect vulnerabilities of these networks. The integration of the IDS and the SDN controller was also successful. \\To achieve this goal, the first steps will be to implement an existing Self-healing SDN controller and assess intrinsic vulnerabilities of Wide Area Measurement Systems (WAMS) and SCADA networks. After that, we will integrate the Ryu controller with Snort, and create the Snort rules that are specific for SCADA or WAMS systems and protocols.