2 resultados para Sediment drift
Resumo:
Binmore and Samuelson (1999) have shown that perturbations (drift) are crucial to study the stability properties of Nash equilibria. We contribute to this literature by providing a behavioural foundation for models of evolutionary drift. In particular, this article introduces a microeconomic model of drift based on the similarity theory developed by Tversky (1977), Kahneman and Tversky (1979) and Rubinstein (1988),(1998). An innovation with respect to those works is that we deal with similarity relations that are derived from the perception that each agent has about how well he is playing the game. In addition, the similarity relations are adapted to a dynamic setting. We obtain different models of drift depending on how we model the agent´s assessment of his behaviour in the game. The examples of the ultimatum game and the chain-store game are used to show the conditions for each model to stabilize elements in the component of Nash equilibria that are not subgame- perfect. It is also shown how some models approximate the laboratory data about those games while others match the data.
Resumo:
Drift appears to be crucial to study the stability properties of Nash equilibria in a component specifying different out-of-equilibrium behaviour. We propose a new microeconomic model of drift to be added to the learning process by which agents find their way to equilibrium. A key feature of the model is the sensitivity of the noisy agent to the proportion of agents in his player population playing the same strategy as his current one. We show that, 1. Perturbed Payoff-Positive and PayoffMonotone selection dynamics are capable of stabilizing pure non strict Nash equilibria in either singleton or nonsingleton component of equilibria; 2. The model is relevant to understand the role of drift in the behaviour observed in the laboratory for the Ultimatum Game and for predicting outcomes that can be experimentally tested. Hence, the selection dynamics model perturbed with the proposed drift may be seen as well as a new learning tool to understand observed behaviour.