5 resultados para Scattering amplitudes
Resumo:
175 p. : il.
Resumo:
Quantum well states of Ag films grown on stepped Au(111) surfaces are shown to undergo lateral scattering, in analogy with surface states of vicinal Ag(111). Applying angle resolved photoemission spectroscopy we observe quantum well bands with zone-folding and gap openings driven by surface/interface step lattice scattering. Experiments performed on a curved Au(111) substrate allow us to determine a subtle terrace-size effect, i.e., a fine step-density-dependent upward shift of quantum well bands. This energy shift is explained as mainly due to the periodically stepped crystal potential offset at the interface side of the film. Finally, the surface state of the stepped Ag film is analyzed with both photoemission and scanning tunneling microscopy. We observe that the stepped film interface also affects the surface state energy, which exhibits a larger terrace-size effect compared to surface states of bulk vicinal Ag(111) crystals
Resumo:
Qens/wins 2014 - 11th International Conference on Quasielastic Neutron Scattering and 6th International Workshop on Inelastic Neutron Spectrometers / editado por:Frick, B; Koza, MM; Boehm, M; Mutka, H
Resumo:
Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle psi about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum P-T relative to the direction of the incident beam, and the Feynman variable x(F). The sin psi* amplitudes are positive for pi(+) and K+ slightly negative for pi(-) and consistent with zero for K-, with particular P-T but weak x(F) dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Resumo:
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities-the energy and momentum transferred-are expected to be related to the dynamic structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.