8 resultados para SYMPATHETIC-RESPIRATORY COUPLING
Resumo:
We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin-dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures.
Resumo:
Background: Bronchiolitis caused by the respiratory syncytial virus (RSV) and its related complications are common in infants born prematurely, with severe congenital heart disease, or bronchopulmonary dysplasia, as well as in immunosuppressed infants. There is a rich literature on the different aspects of RSV infection with a focus, for the most part, on specific risk populations. However, there is a need for a systematic global analysis of the impact of RSV infection in terms of use of resources and health impact on both children and adults. With this aim, we performed a systematic search of scientific evidence on the social, economic, and health impact of RSV infection. Methods: A systematic search of the following databases was performed: MEDLINE, EMBASE, Spanish Medical Index, MEDES-MEDicina in Spanish, Cochrane Plus Library, and Google without time limits. We selected 421 abstracts based on the 6,598 articles identified. From these abstracts, 4 RSV experts selected the most relevant articles. They selected 65 articles. After reading the full articles, 23 of their references were also selected. Finally, one more article found through a literature information alert system was included. Results: The information collected was summarized and organized into the following topics: 1. Impact on health (infections and respiratory complications, mid-to long-term lung function decline, recurrent wheezing, asthma, other complications such as otitis and rhino-conjunctivitis, and mortality; 2. Impact on resources (visits to primary care and specialists offices, emergency room visits, hospital admissions, ICU admissions, diagnostic tests, and treatments); 3. Impact on costs (direct and indirect costs); 4. Impact on quality of life; and 5. Strategies to reduce the impact (interventions on social and hygienic factors and prophylactic treatments). Conclusions: We concluded that 1. The health impact of RSV infection is relevant and goes beyond the acute episode phase; 2. The health impact of RSV infection on children is much better documented than the impact on adults; 3. Further research is needed on mid-and long-term impact of RSV infection on the adult population, especially those at high-risk; 4. There is a need for interventions aimed at reducing the impact of RSV infection by targeting health education, information, and prophylaxis in high-risk populations.
Resumo:
During the last two decades, analysis of 1/f noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/f noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/f noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/f noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/f noise. The experiments also shown to be useful to test the robustness of 1/f scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/f noise.
Resumo:
225 p.
Resumo:
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.
Resumo:
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.
Resumo:
Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z(2) parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.
Resumo:
The health status of premature infants born 32(1)-35(0) weeks' gestational age (wGA) hospitalized for RSV infection in the first year of life (cases; n = 125) was compared to that of premature infants not hospitalized for RSV (controls; n = 362) through 6 years. The primary endpoints were the percentage of children with wheezing between 2-6 years and lung function at 6 years of age. Secondary endpoints included quality of life, healthcare resource use, and allergic sensitization. A significantly higher proportion of cases than controls experienced recurrent wheezing through 6 years of age (46.7% vs. 27.4%; p = 0.001). The vast majority of lung function tests appeared normal at 6 years of age in both cohorts. In children with pulmonary function in the lower limit of normality (FEV1 Z-score [-2; -1]), wheezing was increased, particularly for cases vs. controls (72.7% vs. 18.9%, p = 0.002). Multivariate analysis revealed the most important factor for wheezing was RSV hospitalization. Quality of life on the respiratory subscale of the TAPQOL was significantly lower (p = 0.001) and healthcare resource utilization was significantly higher (p<0.001) in cases than controls. This study confirms RSV disease is associated with wheezing in 32-35 wGA infants through 6 years of age.