5 resultados para STOCHASTIC PROCESSES
Resumo:
This paper deals with the economics of gasification facilities in general and IGCC power plants in particular. Regarding the prospects of these systems, passing the technological test is one thing, passing the economic test can be quite another. In this respect, traditional valuations assume constant input and/or output prices. Since this is hardly realistic, we allow for uncertainty in prices. We naturally look at the markets where many of the products involved are regularly traded. Futures markets on commodities are particularly useful for valuing uncertain future cash flows. Thus, revenues and variable costs can be assessed by means of sound financial concepts and actual market data. On the other hand, these complex systems provide a number of flexibility options (e.g., to choose among several inputs, outputs, modes of operation, etc.). Typically, flexibility contributes significantly to the overall value of real assets. Indeed, maximization of the asset value requires the optimal exercise of any flexibility option available. Yet the economic value of flexibility is elusive, the more so under (price) uncertainty. And the right choice of input fuels and/or output products is a main concern for the facility managers. As a particular application, we deal with the valuation of input flexibility. We follow the Real Options approach. In addition to economic variables, we also address technical and environmental issues such as energy efficiency, utility performance characteristics and emissions (note that carbon constraints are looming). Lastly, a brief introduction to some stochastic processes suitable for valuation purposes is provided.
Resumo:
36 p.
Resumo:
146 p.
Resumo:
Plant community ecologists use the null model approach to infer assembly processes from observed patterns of species co-occurrence. In about a third of published studies, the null hypothesis of random assembly cannot be rejected. When this occurs, plant ecologists interpret that the observed random pattern is not environmentally constrained - but probably generated by stochastic processes. The null model approach (using the C-score and the discrepancy index) was used to test for random assembly under two simulation algorithms. Logistic regression, distance-based redundancy analysis, and constrained ordination were used to test for environmental determinism (species segregation along environmental gradients or turnover and species aggregation). This article introduces an environmentally determined community of alpine hydrophytes that presents itself as randomly assembled. The pathway through which the random pattern arises in this community is suggested to be as follows: Two simultaneous environmental processes, one leading to species aggregation and the other leading to species segregation, concurrently generate the observed pattern, which results to be neither aggregated nor segregated - but random. A simulation study supports this suggestion. Although apparently simple, the null model approach seems to assume that a single ecological factor prevails or that if several factors decisively influence the community, then they all exert their influence in the same direction, generating either aggregation or segregation. As these assumptions are unlikely to hold in most cases and assembly processes cannot be inferred from random patterns, we would like to propose plant ecologists to investigate specifically the ecological processes responsible for observed random patterns, instead of trying to infer processes from patterns
Resumo:
In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzers in industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO2 by cold pressing was performed