4 resultados para SLAB


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to compare 3 types of track (high performance ballasted track, STEDEF and AFTRAV) from the corrugation growth point of view. This work has considered different vehicle speeds and track radii, and the results have taken into account the four wheels of a bogie. These tracks have been studied using Finite Elements with Nastran-Patran and RACING, a tool developed in Matlab by the authors which estimates the corrugation growth tendency. The tracks are studied using the Finite Strip Method and the Periodic Structure Theory. Lateral and vertical receptances for track and vehicle have been obtained, as well as the corrugation growth functions. In the paper the tracks are ranked according to corrugation development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]Se trata de realizar el cálculo de un forjado mediante cuatro soluciones constructivas diferentes, nervios in situ, viguetas prefabricadas, prelosas y placas alveolares. Se quiere establecer cuál es la solución más adecuada para diferentes distancias entre apoyos. Para ello se harán dos estudios con diferentes herramientas informáticas, Excel y CYPE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a theoretical and experimental study of multidirectional steel fibers reinforced concrete slabs (SFRC). The study is based on a real building application using SFRC flag slabs. For the evaluation of the slabs bearing capacity, plastic calculations are performed both at section and structure levels. The section analysis uses the perfect plastic stress-strain diagram, with reference to the values of the strength characteristics of SFRC based on previous jobs that used similar fibers and dosages. In the structure analysis the plastic yield lines method has been used. This method relates the section last bearing moment and the plastic collapse load. The experimental campaign has consisted of the testing of six 2 m. diameter circular shaped slabs prototypes, and has allowed to verify the reference resistance used in the calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of dielectric theory, the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-potential states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by numerically solving the one-dimensional Schrodinger equation. The imagepotential state wave functions accumulate most of their probability outside the slab. We find that the random phase approximation (RPA) for the nonlocal dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters: the slab width and the electronic density. The theoretical calculations are compared with experimental results for the work function and image-potential states obtained by two-photon photoemission.