3 resultados para S-matrix theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[eus] Gradu amaierako lan honetan ausazko matrizeen teoriari, RMT-ri, buruzko sarrera orokor bat egiten da ondoren aplikazio fisiko bat emateko. Teoriaren aplikazioa egiteko Kaos kuantikoa deritzon fisikaren arloa erabiliko da. Lehenik eta behin, RMT-ren kontzeptu batzuk azalduko dira helburutzat lehen auzokideen distantziaren distribuzioaren espresio lortzea izanik. Izan ere, distribuzio honek erakutsiko baititu Kaosak kuantikoki uzten dituen aztarnak. Bigarren kapituluan, aplikazio fisikoa azalduko da. Lehenengo Kaosean RMT nola aplikatzen den ikusiko da, ondoren adibide batzuen bidez argituz, eremu magnetiko batean dagoen hidrogeno atomoa eta billar kuantikoak izenarekin ezagutzen diren sistemak, batik bat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]Este documento presenta una teoría de análisis cinemático capaz de unificar posición/orientación describiendo el movimiento de la herramienta de un robot mediante un cuaternión dual que envuelve traslación y rotación. Se desarrolla la cinemática directa de dos robots, uno redundante y otro no redundante a fin de evaluar la validez del método en ambos casos. Por último, se comparan los resultados de dicha teoría con los resultados que ofrece la conocida teoría de las matrices de transformación homogéneas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En esta tesis estudiamos las teorías sobre la Matriz Densidad Reducida (MDR) como un marco prometedor. Nos enfocamos sobre esta teorías desde dos aspectos: Primero, usamos algunos modelos sencillos hechos con dos partículas las cuales estan armónicamente confinadas como una base para ilustrar la utilidad de la matriz densidad. Para tales sistemas, usamos la MDR de un cuerpo para calcular algunas cantidades de interés tales como densidad de momentum. Posteriormente obtenemos los orbitales naturales y su número de ocupación para algunos de los modelos, y en uno de los casos expresamos la MDR de dos cuerpos de manera exacta en términos de la MDR de un cuerpo. También usamos el teorema diferencial del virial para establecer una descripción unificada de la familia entera de estos sistemas modelo en términos de la densidad. En la seguna parte cambiamos a casos fuera del equilibrio y analizamos la así llamada jerarquía BBGKY de ecuaciones para describir la evolución temporal de un sistema de muchos cuerpos en términos de sus MDRs (a todos los órdenes). Proveemos un exhaustivo estudio de los desafíos y problemas abiertos ligados a la truncación de tales jerarquías de ecuaciones para hacerlas aplicables. Restringimos nuestro análisis a la evolución acoplada de la MDR de uno y dos cuerpos, donde los efectos de correlación de alto orden estan embebidos dentro de la aproximación usada para cerrar las ecuaciones. Probamos que dentro de esta aproximación, el número de electrones y la energía total se conservan, sin importar la aproximación usada. Luego, demostramos que aplicando los esquemas de truncación de estado base para llevar los electrones a comportamientos indeseables y no físicos, tales como la violación e incluso la divergencia en la densidad electrónica local, tanto en regímenes correlacionados débiles y fuertes.