4 resultados para Rotational inertia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper uses a structural approach based on the indirect inference principle to estimate a standard version of the new Keynesian monetary (NKM) model augmented with term structure using both revised and real-time data. The estimation results show that the term spread and policy inertia are both important determinants of the U.S. estimated monetary policy rule whereas the persistence of shocks plays a small but significant role when revised and real-time data of output and inflation are both considered. More importantly, the relative importance of term spread and persistent shocks in the policy rule and the shock transmission mechanism drastically change when it is taken into account that real-time data are not well behaved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper estimates a standard version of the New Keynesian Monetary (NKM) model augmented with financial variables in order to analyze the relative importance of stock market returns and term spread in the estimated U.S. monetary policy rule. The estimation procedure implemented is a classical structural method based on the indirect inference principle. The empirical results show that the Fed seems to respond to the macroeconomic outlook and to the stock market return but does not seem to respond to the term spread. Moreover, policy inertia and persistent policy shocks are also significant features of the estimated policy rule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]El proyecto consiste en el desarrollo mecánico de un manipulador paralelo basado en un mecanismo de cadena cerrada y 5 pares de rotación moviéndose en un mismo plano, de modo que cubra un espacio de manipulación previamente definido. Para ello se realizan los diseños en programas de CAD y se realizan los planos de diseño y montaje con el objetivo de posteriormente llevar el diseño a la realidad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.