2 resultados para Repressed-ucs
Resumo:
In this work we wanted to study the mechanism of E2F2-mediated repression. Our hypothesis is that E2F2 activates the expression of one or more E2F members of the “repressor” subset of the family through the E2F motifs present in their promoters, and those repressor E2F(s) would subsequently repress the target promoters. To address this hypothesis, we focused on E2F7. E2F7 is a repressor that lacks the Rb binding domain, and associates with DNA through E2F binding sites (de Bruin et al., 2003). Furthermore, E2F7 itself is also regulated by E2F motifs on its own promoter, and it has been shown to repress DNA metabolism and replication genes in late S-phase (de Bruin et al., 2003; Westendorp et al., 2012). E2F7, together with E2F8 has been found to form heterodimers, being critical on cell proliferation and development, and both seem to have similar functions (Li et al., 2008). Preliminary results from Zubiaga’s group have indicated that E2F2 activates E2F7 transcription in U2OS cells, suggesting that E2F2’s repressor function could be mediated by E2F7. For this purpose, we focused on studying E2F7’s role on the target genes previously known to be repressed by E2F2: Chk1 and Mcm5. The specific aims for this work were the following: - Confirm that E2F2 induces E2F7 in HEK-293T cells - Assess whether E2F7 acts as a transcriptional repressor on E2F sites - Evaluate the role of E2F7 on E2F2-mediated transcriptional repression of Chk1 and Mcm5.
Resumo:
Background: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds. However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have not been compared and the impact on plant defence has not been analysed. Results: Arabidopsis plants were exposed to TiO2-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the colonization of distal leaves by bacteria. Conclusions: This study integrates the effect of nanoparticles on gene expression with plant responses to major sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds through hormonal priming.