4 resultados para Regulated transcription


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous transcription factors self-assemble into different order oligomeric species in a way that is actively regulated by the cell. Until now, no general functional role has been identified for this widespread process. Here, we capture the effects of modulated self-assembly in gene expression with a novel quantitative framework. We show that this mechanism provides precision and flexibility, two seemingly antagonistic properties, to the sensing of diverse cellular signals by systems that share common elements present in transcription factors like p53, NF-kappa B, STATs, Oct and RXR. Applied to the nuclear hormone receptor RXR, this framework accurately reproduces a broad range of classical, previously unexplained, sets of gene expression data and corroborates the existence of a precise functional regime with flexible properties that can be controlled both at a genome-wide scale and at the individual promoter level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we wanted to study the mechanism of E2F2-mediated repression. Our hypothesis is that E2F2 activates the expression of one or more E2F members of the “repressor” subset of the family through the E2F motifs present in their promoters, and those repressor E2F(s) would subsequently repress the target promoters. To address this hypothesis, we focused on E2F7. E2F7 is a repressor that lacks the Rb binding domain, and associates with DNA through E2F binding sites (de Bruin et al., 2003). Furthermore, E2F7 itself is also regulated by E2F motifs on its own promoter, and it has been shown to repress DNA metabolism and replication genes in late S-phase (de Bruin et al., 2003; Westendorp et al., 2012). E2F7, together with E2F8 has been found to form heterodimers, being critical on cell proliferation and development, and both seem to have similar functions (Li et al., 2008). Preliminary results from Zubiaga’s group have indicated that E2F2 activates E2F7 transcription in U2OS cells, suggesting that E2F2’s repressor function could be mediated by E2F7. For this purpose, we focused on studying E2F7’s role on the target genes previously known to be repressed by E2F2: Chk1 and Mcm5. The specific aims for this work were the following: - Confirm that E2F2 induces E2F7 in HEK-293T cells - Assess whether E2F7 acts as a transcriptional repressor on E2F sites - Evaluate the role of E2F7 on E2F2-mediated transcriptional repression of Chk1 and Mcm5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Staphyloccocal nuclease domain-containing protein 1 (SND1) is involved in the regulation of gene expression and RNA protection. While numerous studies have established that SND1 protein expression is modulated by cellular stresses associated with tumor growth, hypoxia, inflammation, heat- shock and oxidative conditions, little is known about the factors responsible for SND1 expression. Here, we have approached this question by analyzing the transcriptional response of human SND1 gene to pharmacological endoplasmic reticulum (ER) stress in liver cancer cells. Results: We provide first evidence that SND1 promoter activity is increased in human liver cancer cells upon exposure to thapsigargin or tunicamycin or by ectopic expression of ATF6, a crucial transcription factor in the unfolded protein response triggered by ER stress. Deletion analysis of the 5'-flanking region of SND1 promoter identified maximal activation in fragment (-934, +221), which contains most of the predicted ER stress response elements in proximal promoter. Quantitative real- time PCR revealed a near 3 fold increase in SND1 mRNA expression by either of the stress- inducers; whereas SND1 protein was maximally upregulated (3.4-fold) in cells exposed to tunicamycin, a protein glycosylation inhibitor. Conclusion: Promoter activity of the cell growth- and RNA-protection associated SND1 gene is up-regulated by ER stress in human hepatoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH) by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified "lipid metabolism regulation" as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2(+/+)) and E2F2 deficient (E2F2(-/-)) mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2(+/+) and E2F2(-/-) mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2(-/-) mice resembles the phenotype of proliferating E2F2(+/+) liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.