9 resultados para Rational Solutions
Resumo:
This paper presents a model designed to study vertical interactions between wheel and rail when the wheel moves over a rail welding. The model focuses on the spatial domain, and is drawn up in a simple fashion from track receptances. The paper obtains the receptances from a full track model in the frequency domain already developed by the authors, which includes deformation of the rail section and propagation of bending, elongation and torsional waves along an infinite track. Transformation between domains was secured by applying a modified rational fraction polynomials method. This obtains a track model with very few degrees of freedom, and thus with minimum time consumption for integration, with a good match to the original model over a sufficiently broad range of frequencies. Wheel-rail interaction is modelled on a non-linear Hertzian spring, and consideration is given to parametric excitation caused by the wheel moving over a sleeper, since this is a moving wheel model and not a moving irregularity model. The model is used to study the dynamic loads and displacements emerging at the wheel-rail contact passing over a welding defect at different speeds.
Resumo:
54 p.
Resumo:
28 p.
Resumo:
221 p.
Resumo:
The aim of this paper is to present fixed point result of mappings satisfying a generalized rational contractive condition in the setup of multiplicative metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of pair of rational contractive types mappings involved in cocyclic representation of a nonempty subset of a multiplicative metric space are also obtained. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature.
Resumo:
153 p.
Resumo:
This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in general nonperiodic, sampling points t(i) is an element of [t(0), t(J)] for i = 0, 1, . . . , J of the solution. Two examples are provided.
Resumo:
This paper is devoted to the investigation of nonnegative solutions and the stability and asymptotic properties of the solutions of fractional differential dynamic linear time-varying systems involving delayed dynamics with delays. The dynamic systems are described based on q-calculus and Caputo fractional derivatives on any order.
Resumo:
The objective of this dissertation is to study the theory of distributions and some of its applications. Certain concepts which we would include in the theory of distributions nowadays have been widely used in several fields of mathematics and physics. It was Dirac who first introduced the delta function as we know it, in an attempt to keep a convenient notation in his works in quantum mechanics. Their work contributed to open a new path in mathematics, as new objects, similar to functions but not of their same nature, were being used systematically. Distributions are believed to have been first formally introduced by the Soviet mathematician Sergei Sobolev and by Laurent Schwartz. The aim of this project is to show how distribution theory can be used to obtain what we call fundamental solutions of partial differential equations.