4 resultados para Railway simulation tools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, train control in-lab simulation tools play a crucial role in reducing extensive and expensive on-site railway testing activities. In this paper, we present our contribution in this arena by detailing the internals of our European Railway Train Management System in-lab demonstrator. This demonstrator is built over a general-purpose simulation framework, Riverbed Modeler, previously Opnet Modeler. Our framework models both ERTMS subsystems, the Automatic Train Protection application layer based on movement authority message exchange and the telecommunication subsystem based on GSM-R communication technology. We provide detailed information on our modelling strategy. We also validate our simulation framework with real trace data. To conclude, under current industry migration scenario from GSM-R legacy obsolescence to IP-based heterogeneous technologies, our simulation framework represents a singular tool to railway operators. As an example, we present the assessment of related performance indicators for a specific railway network using a candidate replacement technology, LTE, versus current legacy technology. To the best of our knowledge, there is no similar initiative able to measure the impact of the telecommunication subsystem in the railway network availability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of the railway sector depends, to a great extent, on the deployment of advanced railway signalling systems. These signalling systems are based on communication architectures that must cope with complex electromagnetical environments. This paper is outlined in the context of developing the necessary tools to allow the quick deployment of these signalling systems by contributing to an easier analysis of their behaviour under the effect of electromagnetical interferences. Specifically, this paper presents the modelling of the Eurobalise-train communication flow in a general purpose simulation tool. It is critical to guarantee this communication link since any lack of communication may lead to a stop of the train and availability problems. In order to model precisely this communication link we used real measurements done in a laboratory equipped with elements defined in the suitable subsets. Through the simulation study carried out, we obtained performance indicators of the physical layer such as the received power, SNR and BER. The modelling presented in this paper is a required step to be able to provide quality of service indicators related to perturbed scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhancing the handover process in broadband wireless communication deployment has traditionally motivated many research initiatives. In a high-speed railway domain, the challenge is even greater. Owing to the long distances covered, the mobile node gets involved in a compulsory sequence of handover processes. Consequently, poor performance during the execution of these handover processes significantly degrades the global end-to-end performance. This article proposes a new handover strategy for the railway domain: the RMPA handover, a Reliable Mobility Pattern Aware IEEE 802.16 handover strategy "customized" for a high-speed mobility scenario. The stringent high mobility feature is balanced with three other positive features in a high-speed context: mobility pattern awareness, different sources for location discovery techniques, and a previously known traffic data profile. To the best of the authors' knowledge, there is no IEEE 802.16 handover scheme that simultaneously covers the optimization of the handover process itself and the efficient timing of the handover process. Our strategy covers both areas of research while providing a cost-effective and standards-based solution. To schedule the handover process efficiently, the RMPA strategy makes use of a context aware handover policy; that is, a handover policy based on the mobile node mobility pattern, the time required to perform the handover, the neighboring network conditions, the data traffic profile, the received power signal, and current location and speed information of the train. Our proposal merges all these variables in a cross layer interaction in the handover policy engine. It also enhances the handover process itself by establishing the values for the set of handover configuration parameters and mechanisms of the handover process. RMPA is a cost-effective strategy because compatibility with standards-based equipment is guaranteed. The major contributions of the RMPA handover are in areas that have been left open to the handover designer's discretion. Our simulation analysis validates the RMPA handover decision rules and design choices. Our results supporting a high-demand video application in the uplink stream show a significant improvement in the end-to-end quality of service parameters, including end-to-end delay (22%) and jitter (80%), when compared with a policy based on signal-to-noise-ratio information.